Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2021 - 2022 sở GDĐT Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Nghệ An; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2021 – 2022 sở GD&ĐT Nghệ An : + Cho các số thực không âm a b c thỏa mãn a + b + c =< 3. Tìm giá trị nhỏ nhất của biểu thức P. + Cho đường tròn (O) và dây cung BC cố định (BC khác đường kính). Điểm A thuộc cung lớn BC sao cho tam giác ABC nhọn và AB < AC. Đường tròn (I) nội tiếp tam giác ABC tiếp xúc với các cạnh BC, AB lần lượt tại D, E. Đường thẳng AD cắt đường tròn (I) tại điểm thứ hai là M; BM cắt đường tròn (I) tại điểm thứ hai là Q; BI cắt DE tại P. a) Chứng minh tứ giác IPQM nội tiếp. b) Chứng minh BME = DMP. c) Đường tròn đi qua C tiếp xúc với Al tại I cắt BC tại H và cắt (O) tại điểm thứ hai là K. Chứng minh khi A di động trên (O) thì đường thắng HK luôn đi qua một điểm cố định. + Trong một hoạt động ngoại khóa có 20 giáo viên và 80 học sinh đến từ nhiều nơi tham gia. Biết rằng mỗi giáo viên quen với ít nhất 65 người và mỗi học sinh quen với tối đa 12 người (quan hệ quen được xem là có tính 2 chiều: Người A quen người B thì người B cũng quen người A). Ban tổ chức xếp họ thành 41 nhóm. Hỏi ban tổ chức có thể xếp sao cho nhóm nào cũng có 2 người quen nhau không? Vì sao?

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG Toán 9 năm 2019 - 2020 phòng GDĐT thị xã Sa Pa - Lào Cai
Đề thi HSG Toán 9 năm 2019 – 2020 phòng GD&ĐT thị xã Sa Pa – Lào Cai có đáp số và hướng dẫn giải chi tiết. Trích dẫn đề thi HSG Toán 9 năm 2019 – 2020 phòng GD&ĐT thị xã Sa Pa – Lào Cai : + Đường tròn (O) đường kính AB = 2R. Gọi M là một điểm bất kỳ thuộc đường tròn tâm O khác A B. Các tiếp tuyến của đường tròn tâm O tại A và M cắt nhau tại E. Vẽ MP vuông góc với AB (P ∈ AB) vẽ MQ vuông góc với AE (Q ∈ AE). a) Chứng minh rằng: bốn điểm A E M O cùng thuộc một đường tròn và tứ giác APMQ là hình chữ nhật; b) Gọi I là trung điểm của PQ. Chứng minh O I E thẳng hàng; c) Gọi K là giao điểm của EB và MP. Chứng minh ∆EAO đồng dạng với ∆MPB và K là trung điểm của MP; d) Đặt AP = x. Tính MP theo x và R. Tìm vị trí của điểm M trên đường tròn (O) để hình chữ nhật APMQ có diện tích lớn nhất. + Cho hệ phương trình với tham số m: m 1 x y 3m 4 x m 1y m a) Giải và biện luận hệ phương trình theo m; b) Tìm các giá trị nguyên của m để nghiệm của hệ phương trình là các số nguyên; c) Tìm các giá trị của m để hệ phương trình có nghiệm dương duy nhất. + Cho đường thẳng (d) có phương trình: 2 1 2 2 2 m y x m m (với m tham số và m ≠ 2). a) Tìm điểm cố định mà đường thẳng (d) luôn đi qua; b) Xác định giá trị tham số m để khoảng cách từ gốc toạ độ O đến đường thẳng (d) là lớn nhất.
Đề thi học sinh giỏi Toán 9 năm 2019 - 2020 phòng GDĐT Bình Xuyên - Vĩnh Phúc
Đề thi học sinh giỏi Toán 9 năm 2019 – 2020 phòng GD&ĐT Bình Xuyên – Vĩnh Phúc gồm 01 trang với 09 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2019 – 2020 phòng GD&ĐT Bình Xuyên – Vĩnh Phúc : + Cho tam giác ABC nhọn. Gọi D là trung điểm của BC; E là điểm bất kỳ trên cạnh AC. Gọi M là giao điểm của AD với BE. Kẻ đường thẳng CM cắt AB tại F. Chứng minh rằng hai đường thẳng EF và BC song song với nhau. + Trong hình vuông cạnh bằng 18 cho 1945 điểm. Chứng minh rằng luôn tồn tại một đường tròn bán kính 1 chứa ít nhất 7 điểm trong số 1945 điểm đã cho. + Tìm tất cả các cặp số nguyên (x;y) thoả mãn 2 22 2 4 4 18 16 39.
Đề thi chọn HSG cấp huyện Toán 9 năm 2019 - 2020 phòng GDĐT Lục Ngạn - Bắc Giang
Ngày 04 tháng 12 năm 2019, phòng Giáo dục và Đào tạo huyện Lục Ngạn, tỉnh Bắc Giang tổ chức kỳ thi chọn học sinh giỏi cấp huyện môn Toán lớp 9 năm học 2019 – 2020. Đề thi chọn HSG cấp huyện Toán 9 năm 2019 – 2020 phòng GD&ĐT Lục Ngạn – Bắc Giang gồm có 01 trang với 05 bài toán, đề được biên soạn theo hình thức tự luận, học sinh có 120 phút để hoàn thành bài thi. Trích dẫn đề thi chọn HSG cấp huyện Toán 9 năm 2019 – 2020 phòng GD&ĐT Lục Ngạn – Bắc Giang : + Cho tam giác ABC nhọn. Vẽ đường tròn (O), đường kính BC cắt các cạnh AB, AC lần lượt ở D, E. Gọi I là hình chiếu của A trên BC, H là giao điểm của AI và CD. Chứng minh rằng: a. Ba điểm B, H, E thẳng hàng và bốn điểm A, D, H, E cùng thuộc một đường tròn. b. Đường thẳng OD là tiếp tuyến của đường tròn ngoại tiếp tam giác ADE. [ads] + Tìm hình vuông có kích thước nhỏ nhất để trong hình vuông đó có thể sắp xếp được 5 hình tròn có bán kính bằng 1, sao cho không có hai hình tròn bất kì nào trong chúng có điểm trong chung. + Tìm các số nguyên dương x, y, z thỏa mãn đồng thời hai điều kiện sau: (x – y√2019)/(y – z√2019) số hữu tỉ và x^2 + y^2 + z^2 là số nguyên tố.
Đề thi HSG Toán 9 cấp quận năm 2019 - 2020 phòng GDĐT Ba Đình - Hà Nội
Thứ Năm ngày 07 tháng 11 năm 2019, phòng Giáo dục và Đào tạo quận Ba Đình, thành phố Hà Nội tổ chức kỳ thi chọn học sinh giỏi lớp 9 cấp quận môn Toán năm học 2019 – 2020. Đề thi HSG Toán 9 cấp quận năm 2019 – 2020 phòng GD&ĐT Ba Đình – Hà Nội gồm có 5 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có 1 trang. Trích dẫn đề thi HSG Toán 9 cấp quận năm 2019 – 2020 phòng GD&ĐT Ba Đình – Hà Nội : + Cho nửa đường tròn (O) đường kính AB, dây CD (C thuộc cung AD), gọi M là chân đường vuông góc kẻ từ A đến CD, trên tia đối của tia DC lấy điểm N sao cho CM = DN. a) Chứng minh BN vuông góc với CD. b) Gọi I là giao điểm của AD và BC. Chứng minh: S_AIB = S_AMC + S_CID + S_DNB. [ads] + Cho tam giác ABC vuông tại A (AB < AC) và đường cao AH. a) Cho biết AH = 12 cm và BC = 25 cm. Tính tổng AB + AC. b) Đường thẳng đi qua trọng tâm G của tam giác ABC cắt các cạnh AB, AC lần lượt tại M và N. Chứng minh rằng: 1/AM^2 + 1/AN^2 = 9/BC^2. + Cho A là một tập hợp gồm ba số tự nhiên có tính chất: tổng hai phần tử tùy ý của A là một số chính phương. Chứng minh rằng: trong tập hợp A có không quá một số lẻ. + Cho a, b là các số thực dương thỏa mãn a + 1/b ≤ 1. Tìm giá trị lớn nhất của biểu thức T = ab/(a^2 + b^2). + Tìm số tự nhiên a biết a + 20 và a – 69 đều là số chính phương.