Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Bến Tre

Nội dung Đề thi chọn học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Bến Tre Bản PDF - Nội dung bài viết Đề thi chọn học sinh giỏi lớp 9 môn Toán năm 2022-2023 tại Bến Tre Đề thi chọn học sinh giỏi lớp 9 môn Toán năm 2022-2023 tại Bến Tre Sytu xin gửi đến quý thầy cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán năm học 2022-2023 do Phòng Giáo dục và Đào tạo thành phố Bến Tre tổ chức. Đề thi bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài là 150 phút. Kỳ thi sẽ diễn ra vào ngày ... tháng 12 năm 2022. Đây là một số câu hỏi trong đề thi: Bài 1: Cho biểu thức A = ... a) Chứng minh rằng A > 4. b) Tìm các giá trị của a để biểu thức 6/A nhận giá trị nguyên. Bài 2: Tìm tất cả các số tự nhiên n sao cho biểu thức B = n(n + 1)(n + 2)/6 + 1 là số nguyên tố. Bài 3: Cho tam giác ABC có ba góc nhọn và ba đường cao AK, BD, CE cắt nhau tại H. a) Chứng minh BH.BD = BC.BK và BH.BD + CH.CE = BC². b) Chứng minh BH = AC.cotABC. c) Gọi M là trung điểm của BC. Đường thẳng qua A và vuông góc với AM cắt BD, CE lần lượt tại Q, P. Chứng minh rằng MP = MQ. Hy vọng rằng đề thi sẽ là cơ hội để các em học sinh thể hiện khả năng và kiến thức của mình trong môn Toán. Chúc các em thi tốt!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2022 - 2023 trường THCS Lý Nhật Quang - Nghệ An (vòng 2)
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh dự thi học sinh giỏi cấp tỉnh môn Toán 9 năm học 2022 – 2023 trường THCS Lý Nhật Quang, huyện Đô Lương, tỉnh Nghệ An (vòng 2). Trích dẫn Đề học sinh giỏi Toán 9 năm 2022 – 2023 trường THCS Lý Nhật Quang – Nghệ An (vòng 2) : + Cho P = abc là số nguyên tố có ba chữ số. Chứng minh rằng phương trình ax2 + bx + c = 0 không có nghiệm hữu tỷ. + Có 48 quả cân có khối lượng là 1g, 2g, 3g, …, 48g. Hãy phân chia tất cả các quả cân đó thành ba nhóm sao cho tổng khối lượng của số quả cân trong ba nhóm bằng nhau. + Nhân dịp chào mừng ngày Hiến Chương Nhà Giáo Việt Nam và ngày kỷ niệm 45 năm thành lập trường THCS Lý Nhật Quang, Ban Giám Hiệu nhà trường đã dự định mời 100 đại biểu về dự, trong đó mỗi người đều quen không ít hơn 50 người. Chứng tỏ rằng Ban Giám Hiệu nhà trường có thể xếp được bốn người vào một bàn tròn sao cho mỗi người ngồi giữa hai người quen của mình.
Đề học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT Hai Bà Trưng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo quận Hai Bà Trưng, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 18 tháng 10 năm 2022. Trích dẫn Đề học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT Hai Bà Trưng – Hà Nội : + Cho tam giác ABC nhọn, không cân (AB < AC), M là trung điểm của BC. Gọi E, F lần lượt là chân các đường vuông góc hạ từ M lên AC, AB (E thuộc AC; F thuộc AB). Đường thẳng qua C và vuông góc với BC, cắt ME tại P; đường thẳng qua B vuông góc với BC, cắt MF tại Q. 1) Chứng minh ME.MP = MF.MQ và MFE = MPQ. 2) Hai đường thẳng FM và AC cắt nhau tại S. Chứng minh tam giác SEF đồng dạng với tam giác SMA và AM vuông góc với PQ. 3) Gọi H là trực tâm của tam giác ABC. Chứng minh ba điểm P, H, Q thẳng hàng. + Cho a, b, x, y là các số nguyên dương thoả mãn a, b nguyên tố cùng nhau và (x2 + y2)/a = xy/b. Chứng minh a + 2b là số chính phương. + Trong khu rừng trên đảo có một đàn gồm 2021 con kì nhông màu xanh, 2022 con kì nhông màu đỏ, 2023 con kì nhông màu vàng sinh sống. Để lẩn trốn và săn mồi, loài kì nhông này biến đổi màu như sau: nếu hai con khác màu gặp nhau thì chúng cùng đổi sang màu thứ ba; nếu hai con cùng màu gặp nhau thì chúng giữ nguyên màu. Hỏi có khả năng nào để tất cả các con kì nhông trở thành cùng một màu được không? Vì sao?
Đề học sinh giỏi Toán 9 năm 2022 - 2023 trường THCS Nghi Thủy - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 trường THCS Nghi Thủy, huyện Cửa Lò, tỉnh Nghệ An.
Đề chọn học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT Tân Kỳ - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Tân Kỳ, tỉnh Nghệ An; kỳ thi được diễn ra vào ngày 12 tháng 10 năm 2022. Trích dẫn Đề chọn học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT Tân Kỳ – Nghệ An : + Tìm số tự nhiên n sao cho n2 + 2022 là số chính phương. + Cho a, b, c là các số nguyên khác 0 thỏa mãn điều kiện: (1/a + 1/b + 1/c)2 = 1/a2 + 1/b2 + 1/c2. Chứng minh rằng: a3 + b3 + c3 chia hết cho 3. + Cho tam giác ABC nhọn và điểm P nằm trong tam giác đó. Chứng minh khoảng cách lớn nhất trong các khoảng cách từ P tới ba đỉnh của tam giác không nhỏ hơn hai lần khoảng cách bé nhất trong các khoảng cách từ điểm P đến các cạnh của tam giác đó.