Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 trường THCS Nguyễn Trường Tộ Hà Nội

Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 trường THCS Nguyễn Trường Tộ Hà Nội Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 9 trường THCS Nguyễn Trường Tộ Hà Nội Đề học sinh giỏi Toán lớp 9 trường THCS Nguyễn Trường Tộ Hà Nội Chúng ta sẽ cùng tìm hiểu về đề khảo sát chất lượng học sinh giỏi môn Toán lớp 9 năm học 2023 – 2024 của trường THCS Nguyễn Trường Tộ ở Hà Nội. Đề thi diễn ra vào ngày 16 tháng 09 năm 2023 với các câu hỏi hấp dẫn và thú vị như sau: 1. Cho ba số nguyên dương m, n, p thỏa mãn: (m + n!)(n + m!) = 5^p. Hãy chứng minh rằng mn là số chính phương. 2. Trong tam giác không cân ABC nhọn, với các đường cao AD, BE, CF cắt nhau tại trực tâm H. Gọi M, I lần lượt là trung điểm của BC, AH. Chúng ta cần thực hiện các bước sau: Chứng minh rằng IE vuông góc với ME. Chứng minh rằng SA song song với BC. Chứng minh rằng I là trung điểm của PQ, trong đó P, Q lần lượt là giao điểm của SI với BE, CF. 3. Cho 2023 điểm phân biệt được phủ lên bởi một tam giác vuông cân có cạnh huyền bằng 24. Chứng minh rằng luôn tồn tại một hình tròn có đường kính bằng 1, phủ lên ít nhất 7 điểm đã cho. Đây là những câu hỏi đầy thách thức, đòi hỏi sự tư duy logic và kỹ năng giải quyết vấn đề từ các em học sinh. Hy vọng rằng đề thi sẽ giúp các em rèn luyện và phát triển khả năng Toán học của mình một cách hiệu quả.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi tỉnh Toán 9 THCS năm học 2016-2017 sở GD và ĐT Hải Dương
Đề thi chọn học sinh giỏi tỉnh Toán 9 THCS năm học 2016-2017 sở GD và ĐT Hải Dương gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O, R). Các đường cao AD, BE, CF cắt nhau tại H (D thuộc BC, E thuộc CA, F thuộc AB). Tia EF cắt tia CB tại P, AP cắt đường tròn (O,R) tại M (M khác A). [ads] a) Chứng minh rằng: PE.PF = PM.PA và AM vuông góc với HM. b) Cho cạnh BC cố định, điểm A di chuyển trên cung lớn BC. Xác định vị trí của A để diện tích tam giác BHC đạt giá trị lớn nhất. + Cho tam giác ABC có góc A nhọn, nội tiếp đường tròn tâm O. Một điểm I chuyển động trên cung BC không chứa điểm A (I không trùng với B và C). Đường thẳng vuông góc với IB tại I cắt đường thẳng AC tại E, đường thẳng vuông góc với IC tại I cắt đường thẳng AB tại F. Chứng minh rằng đường thẳng EF luôn đi qua một điểm cố định.
Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2016 - 2017 sở GDĐT Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu; kỳ thi được diễn ra vào ngày 09 tháng 04 năm 2017. Trích dẫn đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu : + Cho đường tròn (O). Qua điểm A nằm ngoài đường tròn kẻ hai tiếp tuyến AM, AN (M, N là hai tiếp điểm) và cát tuyến ABC với đường tròn (B nằm giữa A và C). Gọi I là trung điểm của BC. a) Chứng minh: A, M, O, I, N thuộc một đường tròn; b) Chứng minh: IA là tia phân giác của MIN; c) Vẽ dây CD song song MN, H là giao điểm của BD và MN. Chứng minh: HM = HN. + Cho phương trình: x2 – (m + 5)x + 3m + 6 = 0. Tìm m để phương trình có hai nghiệm x1, x2 là độ dài hai cạnh tam giác vuông có cạnh huyền bằng 5. + Cho biểu thức: P a) Rút gọn P; b) Tính giá trị của P với x 9 45; c) Tìm các giá trị chính phương của x để P có giá trị nguyên.
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2016 - 2017 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Đồng Tháp gồm 06 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 19/3/2017, đề thi có lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi HSG Toán 9 năm 2016 - 2017 phòng GDĐT thị xã Giá Rai - Bạc Liêu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi HSG Toán 9 năm 2016 – 2017 phòng GD&ĐT thị xã Giá Rai – Bạc Liêu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.