Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 năm 2023 trường THCS thị trấn Văn Điển - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm 2023 trường THCS thị trấn Văn Điển, huyện Thanh Trì, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 06 tháng 04 năm 2023. Trích dẫn Đề thi thử Toán vào lớp 10 năm 2023 trường THCS thị trấn Văn Điển – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Hàng ngày, bạn An đi học từ nhà đến trường bằng xe đạp. Biết rằng khoảng cách từ nhà bạn An đến trường là 4km. Do lúc về phải lên dốc nên vận tốc đạp xe chậm hơn vận tốc lúc đi 4km/h, vì vậy thời gian lúc về lâu hơn thời gian lúc đi là 5 phút. Hỏi vận tốc đạp xe lúc về của bạn An bằng bao nhiêu km/h? + Người ta thiết kế một thùng tôn hình trụ không có nắp để đựng nước có dung tích bằng 2m3. Biết chiều cao thùng tôn là 2m. Hỏi phải dùng tối thiểu bao nhiêu m2 tôn (không kể mép nối) để làm được thùng tôn trên? Lấy pi = 3,14 và kết quả làm tròn đến hai chữ số thập phân. + Cho đường tròn (O;R) và dây cung BC cố định (BC < 2R). Điểm A di động trên đường tròn (O) sao cho tam giác ABC có ba góc nhọn và AB < AC. Vẽ đường cao CD của tam giác ABC và đường kính AM. Hạ CE vuông góc với AM tại E, gọi H là trực tâm của tam giác ABC. 1) Chứng minh rằng tứ giác ADEC nội tiếp được một đường tròn. 2) Chứng minh rằng ABH = DEA và DE.BC = DC.BM. 3) Kéo dài DE cắt BM tại F, BH cắt AC ở K. Chúng minh rằng DF luôn đi qua một điểm cố định và KF // AM.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 chuyên môn Toán (chung) năm 2022 - 2023 sở GDĐT Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (chung) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 14 – 16/06/2022. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chung) năm 2022 – 2023 sở GD&ĐT Quảng Nam : + Xác định tất cả các giá trị của tham số m để phương trình x2 – 2mx + m2 + m – 3 = 0 có hai nghiệm phân biệt x1 và x2 sao cho |x1 – x2| = m. + Cho đường tròn (O) có đường kính AB. Trên đường tròn (O) lấy điểm E (khác B) sao cho tiếp tuyến của (O) tại E cắt tia AB tại điểm C. Gọi d là đường thẳng vuông góc với đường thẳng AB tại C, D là giao điểm của đường thẳng AE và đường thẳng d, F là giao điểm thứ hai của đường thẳng BD và đường tròn (O). a) Chứng minh tứ giác BCDE nội tiếp đường tròn. b) Chứng minh EF song song với đường thẳng d. c) Gọi I là giao điểm của BE và CF, H là giao điểm của EF và AB. Chứng minh BC.IF = 2IC.BH. + Cho ba số thực dương a, b, c thỏa mãn a + b + c = 2. Tìm giá trị lớn nhất của biểu thức Q.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDĐT TP Hồ Chí Minh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Hồ Chí Minh; kỳ thi được diễn ra vào chiều Chủ Nhật ngày 12 tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT TP Hồ Chí Minh : + Cho hình vuông ABCD. Trên các cạnh BC và CD lần lượt lấy các điểm M và N sao cho MAN = 45°. a) Chứng minh MN tiếp xúc với đường tròn tâm A bán kính AB. b) Kẻ MP song song với AN (P thuộc đoạn AB) và kẻ NQ song song với AM (Q thuộc đoạn AD). Chứng minh AP = AQ. + Cho tam giác ABC nhọn (AB < AC) có các đường cao AD, BE, CF cắt nhau tại H. Đường thẳng EF cắt đường thẳng BC tại I. Đường thẳng qua A vuông góc với IH tại K và cắt BC tại M. a) Chứng minh tứ giác IFKC nội tiếp b) Chứng minh M là trung điểm của BC. + Số nguyên dương n được gọi là “số tốt” nếu n + 1 và 8n + 1 đều là các số chính phương. a) Hãy chỉ ra ví dụ ba “số tốt” lần lượt có 1, 2, 3 chữ số. b) Tìm các số nguyên k thỏa mãn |k| =< 10 và 4n + k là hợp số với mọi n là “số tốt”.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDĐT Đắk Nông
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đắk Nông. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Đắk Nông : + Trên bảng đang có hai số 1 và 2. Thực hiện ghi thêm số lên bảng theo quy tắc sau: Mỗi lần viết lên bảng một số c = ab + a + b với hai số a và b đã có trên bảng. Hỏi với cách viết thêm số như trên sau một số lần hữu hạn có thể viết được số 2022 lên bảng không? + Cho đường tròn (O) và điểm M nằm ngoài đường tròn (O). Từ M kẻ hai tiếp tuyến MA, MB đến (O) (A, B là tiếp điểm). Kẻ cát tuyến MNP (MN < MP). K là trung điểm của NP. a) Chứng minh các điểm A, K, O, B cùng thuộc một đường tròn và xác định tâm của đường tròn đó. b) BA cắt OK tại E và MP cắt AB tại F. Chứng minh KF là phân giác trong của AKB từ đó suy ra EA.FB = EB.FA. c) Chứng minh khi cát tuyến MNP thay đổi thì trọng tâm tam giác MNP luôn thuộc một đường tròn cố định. + Cho ba số thực dương x, y, z thỏa mãn x + y + z = 3. Tìm giá trị nhỏ nhất của biểu thức?
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Bình Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Định; kỳ thi được diễn ra vào ngày 11 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Bình Định : + Cho phương trình: 2×2 – (m + 1)x + m – 1 = 0. Tìm các giá trị của m để phương trình có hai nghiệm và hiệu hai nghiệm bằng tích của chúng. + Trong hệ toạ độ Oxy cho đường thẳng (d): y = -x + 4 và điểm A(2;2). a) Chứng tỏ điểm A thuộc đường thẳng (d). b) Tìm a để parabol (P): y = ax2 đi qua điểm A. Với giá trị a tìm được, hãy xác định toạ độ điểm B là giao điểm thứ hai của (d) và (P). c) Tính diện tích tam giác OAB. + Tam giác vuông có cạnh huyền bằng 13cm, diện tích là 30cm. Tính độ dài các cạnh góc vuông.