Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề các phương pháp tính tích phân - Nguyễn Duy Khôi

Ngày nay phép tính vi tích phân chiếm một vị trí hết sức quan trọng trong Toán học, tích phân được ứng dụng rộng rãi như để tính diện tích hình phẳng, thể tích khối tròn xoay, nó còn là đối tượng nghiên cứu của giải tích, là nền tảng cho lý thuyết hàm, lý thuyết phương trình vi phân, phương trình đạo hàm riêng… Ngoài ra phép tính tích phân còn được ứng dụng rộng rãi trong Xác suất, Thống kê, Vật lý, Cơ học, Thiên văn học, Y học … Phép tính tích phân được bắt đầu giới thiệu cho các em học sinh ở lớp 12, tiếp theo được phổ biến trong tất cả các trường đại học cho khối sinh viên năm thứ nhất và năm thứ hai trong chương trình học đại cương. Hơn nữa trong các kỳ thi Tốt nghiệp THPT và kỳ thi Tuyển sinh đại học phép tính tích phân hầu như luôn có trong các đề thi môn Toán của khối A, khối B và cả khối D. Bên cạnh đó, phép tính tích phân cũng là một trong những nội dung để thi tuyển sinh đầu vào hệ Thạc sĩ và nghiên cứu sinh. [ads] Với tầm quan trọng của phép tính tích phân, chính vì thế mà tôi viết một số kinh nghiệm giảng dạy tính tích phân của khối 12 với chuyên đề “TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP PHÂN TÍCH – ĐỔI BIẾN SỐ VÀ TỪNG PHẦN” để phần nào củng cố, nâng cao cho các em học sinh khối 12 để các em đạt kết quả cao trong kỳ thi Tốt nghiệp THPT và kỳ thi Tuyển sinh đại học và giúp cho các em có nền tảng trong những năm học đại cương của đại học. Trong phần nội dung chuyên đề dưới đây, tôi xin được nêu ra một số bài tập minh họa cơ bản tính tích phân chủ yếu áp dụng phương pháp phân tích, phương pháp đổi biến số, phương pháp tích phân từng phần. Các bài tập đề nghị là các đề thi Tốt nghiệp THPT và đề thi tuyển sinh đại học Cao đẳng của các năm để các em học sinh rèn luyện kỹ năng tính tích phân và phần cuối của chuyên đề là một số câu hỏi trắc nghiệm tích phân. Tuy nhiên với kinh nghiệm còn hạn chế nên dù có nhiều cố gắng nhưng khi trình bày chuyên đề này sẽ không tránh khỏi những thiếu sót, rất mong được sự góp ý chân tình của quý Thầy Cô trong Hội đồng bộ môn Toán Sở Giáo dục và đào tạo tỉnh Đồng Nai. Nhân dịp này tôi xin cảm ơn Ban lãnh đạo nhà trường tạo điều kiện tốt cho tôi và cảm ơn quý thầy cô trong tổ Toán trường Nam Hà, các đồng nghiệp, bạn bè đã đóng góp ý kiến cho tôi hoàn thành chuyên đề này. Tôi xin chân thành cám ơn.

Nguồn: toanmath.com

Đọc Sách

Kỹ thuật giải toán tích phân
Ebook gồm 582 trang, được biên soạn bởi nhóm tác giả Tạp Chí Và Tư Liệu Toán Học, hướng dẫn các kỹ thuật giải toán nguyên hàm, tích phân và ứng dụng; giúp học sinh ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán, kỳ thi HSG Toán THPT. Mục lục tài liệu kỹ thuật giải toán tích phân: GIỚI THIỆU ĐÔI NÉT VỀ LỊCH SỬ. CHƯƠNG 1 . NGUYÊN HÀM – TÍCH PHÂN HÀM PHÂN THỨC HỮU TỶ. CHƯƠNG 2 . NGUYÊN HÀM – TÍCH PHÂN TỪNG PHẦN. 1. Giới thiệu. 2. Một số bài toán cơ bản. 3. Một số bài toán tổng hợp. CHƯƠNG 3 . CÁC BÀI TOÁN VỀ HÀM LƯỢNG GIÁC. 1. Giới thiệu các lý thuyết cần nhớ. 2. Các dạng toán và phương pháp. 3. Các bài toán biến đổi tổng hợp. CHƯƠNG 4 . NGUYÊN HÀM TÍCH PHÂN HÀM VÔ TỶ, CĂN THỨC. 1. Giới thiệu. 2. Các dạng toán. 3. Kỹ thuật lượng giác hóa. 4. Tổng kết. 5. Các bài toán tổng hợp. CHƯƠNG 5 . CÁC LOẠI TÍCH PHÂN ĐẶC BIỆT. 1. Tích phân liên kết. 2. Kỹ thuật đưa biểu thức vào dấu vi phân. 3. Kỹ thuật đánh giá hàm số. 4. Tích phân hàm trị tuyệt đối. 5. Tích phân có cận thay đổi. 6. Tích phân hàm phân nhánh. 7. Tích phân truy hồi và các bài toán liên quan dãy số. 8. Chứng minh đẳng thức tổ hợp. CHƯƠNG 6 . PHƯƠNG PHÁP ĐỔI CẬN ĐỔI BIẾN – HÀM ẨN. 1. Kỹ thuật đổi ẩn và tính chất các hàm đặc biệt. 2. Các bài toán phương trình hàm. 3. Bài tập tổng hợp. CHƯƠNG 7 . CÁC BÀI TOÁN VỀ PHƯƠNG TRÌNH VI PHÂN. 1. Bài toán liên quan tới tích. 2. Bài toán liên quan tới tổng. 3. Một số bài toán tổng hợp. CHƯƠNG 8 . CÁC ỨNG DỤNG CỦA TÍCH PHÂN. 1. Ứng dụng tính diện tích hình phẳng. 2. Ứng dụng tính thể tích. 3. Ứng dụng tích phân trong thực tiễn. CHƯƠNG 9 . BẤT ĐẲNG THỨC TÍCH PHÂN. 1. Phân tích bình phương. 2. Cân bằng hệ số và bất đẳng thức AM – GM. 3. Bất đẳng thức Cauchy – Schwarz cho tích phân.
Chuyên đề nguyên hàm, tích phân và ứng dụng ôn thi THPT 2021 - Nguyễn Bảo Vương
Tài liệu gồm 521 trang, được biên soạn bởi thầy giáo Nguyễn Bảo Vương, hướng dẫn phương pháp giải các dạng toán và tuyển chọn các bài tập trắc nghiệm chuyên đề nguyên hàm, tích phân và ứng dụng (Giải tích 12 chương 3), có đáp án và lời giải chi tiết, giúp học sinh học tốt chương trình Toán 12 và ôn thi THPT môn Toán năm học 2020 – 2021. CHUYÊN ĐỀ 1 . NGUYÊN HÀM VÀ MỘT SỐ PHƯƠNG PHÁP TÌM NGUYÊN HÀM. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH YẾU – TRUNG BÌNH (Mức độ 5 – 6 điểm). + Dạng toán. Nguyên hàm cơ bản. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH KHÁ (Mức độ 7 – 8 điểm). + Dạng toán 1. Nguyên hàm cơ bản có điều kiện. + Dạng toán 2. Tìm nguyên hàm bằng phương pháp đổi biến số. + Dạng toán 3. Nguyên hàm của hàm số hữu tỉ. + Dạng toán 4. Nguyên hàm từng phần. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH GIỎI – XUẤT SẮC (Mức độ 9 – 10 điểm). + Dạng toán 1. Nguyên hàm của hàm ẩn hoặc liên quan đến phương trình f(x), f'(x), f”(x). + Dạng toán 2. Một số bài toán khác liên quan đến nguyên hàm. CHUYÊN ĐỀ 2 . TÍCH PHÂN VÀ MỘT SỐ PHƯƠNG PHÁP TÍNH TÍCH PHÂN. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH YẾU – TRUNG BÌNH (Mức độ 5 – 6 điểm). + Dạng toán. Sử dụng tính chất, bảng nguyên hàm cơ bản để tính tích phân. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH KHÁ (Mức độ 7 – 8 điểm). + Dạng toán 1. Tích phân cơ bản có điều kiện. + Dạng toán 2. Tích phân hàm số hữu tỷ. + Dạng toán 3. Tích phân đổi biến. + Dạng toán 4. Tích phân từng phần. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH GIỎI – XUẤT SẮC (Mức độ 9 – 10 điểm). + Dạng toán 1. Tích phân hàm ẩn. + Dạng toán 2. Tích phân một số hàm đặc biệt. CHUYÊN ĐỀ 3 . ỨNG DỤNG CỦA TÍCH PHÂN. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH YẾU – TRUNG BÌNH (Mức độ 5 – 6 điểm). + Dạng toán 1. Ứng dụng tích phân để tìm diện tích. + Dạng toán 2. Ứng dụng tích phân để tìm thể tích. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH KHÁ (Mức độ 7 – 8 điểm). + Dạng toán 1. Ứng dụng tích phân để tìm diện tích. + Dạng toán 2. Ứng dụng tích phân để tìm thể tích. TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH GIỎI – XUẤT SẮC (Mức độ 9 – 10 điểm). + Dạng toán 1. Ứng dụng tích phân để giải bài toán chuyển động. + Dạng toán 2. Ứng dụng tích phân để giải một số bài toán thực tế. + Dạng toán 3. Ứng dụng tích phân để giải quyết một số bài toán đại số.
Nguyên hàm và các phương pháp tính nguyên hàm - Nguyễn Hoàng Việt
Tài liệu gồm 95 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, phân dạng và hướng dẫn giải các dạng toán nguyên hàm trong chương trình Giải tích 12 chương 3: nguyên hàm, tích phân và ứng dụng. DẠNG TOÁN 1 : TÍNH NGUYÊN HÀM BẰNG BẢNG NGUYÊN HÀM. + Bài toán 1. Tìm nguyên hàm F(x) của hàm số f(x): Nhóm công thức cơ bản. + Bài toán 2. Tìm nguyên hàm F(x) của hàm số f(x): Nhóm công thức có mẫu số cơ bản. + Bài toán 3. Tìm nguyên hàm F(x) của hàm số f(x): Nhóm công thức nguyên hàm của hàm lượng giác. + Bài toán 4. Tìm nguyên hàm F(x) của hàm số f(x): Nhóm công thức mũ. DẠNG TOÁN 2 : NGUYÊN HÀM CỦA HÀM SỐ HỮU TỶ. + Bài toán 5. Tìm nguyên hàm F(x) của hàm số f(x): Nhóm hàm hữu tỉ không chứa căn thức. DẠNG TOÁN 3 : NGUYÊN HÀM TỪNG PHẦN. + Bài toán 6. Tìm nguyên hàm F(x) của hàm số f(x) bằng phương pháp nguyên hàm từng phần. [ads] DẠNG TOÁN 4 : NGUYÊN HÀM ĐỔI BIẾN SỐ. + Bài toán 7. Tìm nguyên hàm F(x) của hàm số f(x): Nhóm hàm số mũ. + Bài toán 8. Tìm nguyên hàm F(x) của hàm số f(x): Nhóm hàm số chứa căn thức. + Bài toán 9. Tìm nguyên hàm F(x) của hàm số f(x): Nhóm hàm số chứa logarit. + Bài toán 10. Tìm nguyên hàm F(x) của hàm số f(x): Nhóm hàm số chứa e^x. + Bài toán 11. Tìm nguyên hàm F(x) của hàm số f(x): Đổi biến hàm số lượng giác. DẠNG TOÁN 5 : TÍNH CHẤT NGUYÊN HÀM & NGUYÊN HÀM CỦA HÀM ẨN. + Nhóm 1. Sử dụng định nghĩa F'(x) = f(x). + Nhóm 2. Sử dụng định nghĩa giải bài toán nguyên hàm của hàm ẩn.
Kĩ thuật chọn hàm trong các bài toán tích phân từ NB - TH đến VD - VDC
Tài liệu gồm 17 trang, được biên soạn bởi các tác giả: Minh Chung và Dương Đình Tuấn, trình bày kĩ thuật chọn hàm trong các bài toán tích phân từ nhận biết – thông hiểu đến vận dụng – vận dụng cao; đây là một kĩ thuật giải nhanh trắc nghiệm rất hay, giúp đưa một bài toán tích phân khó về một bài toán chọn hàm đơn giản, rút ngắn được thời gian giải toán; giúp học sinh học tốt chương trình Giải tích 12 chương 3: nguyên hàm, tích phân và ứng dụng và ôn thi THPT Quốc gia môn Toán. Dạng toán 1. Hàm hằng. Dạng toán 2. Hàm bậc nhất. Dạng toán 3. Hàm bậc hai. Dạng toán 4. Hàm chẵn. + Dạng 4.1. Hàm chẵn một giả thiết. + Dạng 4.2. Hàm chẵn hai giả thiết. Dạng toán 5. Hàm lẻ. + Dạng 5.1. Hàm lẻ một giả thiết. + Dạng 5.2. Hàm lẻ hai giả thiết. [ads] Dạng toán 6. Hàm tuần hoàn với chu kì T một giả thiết Dạng toán 7. Hàm tuần hoàn với chu kì T và là hàm lẻ một giả thiết. Dạng toán 8. Hàm tuần hoàn với chu kì T và là hàm chẵn một giả thiết. Dạng toán 9. Hàm tuần hoàn với chu kì T và là hàm lẻ một giả thiết. Dạng toán 10. Với bài toán có giả thiết như sau: $f(x) = f(a + b – x)$, $\int_b^a f (x)dx = c.$ Dạng toán 11. Với bài toán có giả thiết như sau: $f(x).f(a + b – x) = g(x) > 0.$ Dạng toán 12. Với bài toán có giả thiết như sau: $\int_a^b {(f(} x){)^2}dx = \alpha $, $\int_a^b f (x).g(x)dx = \beta .$ Phụ lục: Một số thủ thuật giải nhanh các dạng toán tích phân. Xem thêm : Bài toán logarit qua nhiều góc nhìn (Tài liệu cùng tác giả).