Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL lần 2 Toán 11 năm 2023 - 2024 trường THPT Triệu Sơn 4 - Thanh Hóa

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề khảo sát chất lượng lần 2 môn Toán 11 năm học 2023 – 2024 trường THPT Triệu Sơn 4, tỉnh Thanh Hóa. Đề thi được biên soạn theo định dạng trắc nghiệm mới nhất, với cấu trúc gồm 03 phần: Câu trắc nghiệm nhiều phương án lựa chọn; Câu trắc nghiệm đúng sai; Câu trắc nghiệm trả lời ngắn. Kỳ thi được diễn ra vào ngày 31 tháng 03 năm 2024. Đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề KSCL lần 2 Toán 11 năm 2023 – 2024 trường THPT Triệu Sơn 4 – Thanh Hóa : + Trong một lớp có (2 3 n) học sinh gồm An, Bình, Chi cùng 2n học sinh khác. Khi xếp tùy ý các học sinh này vào một dãy ghế được đánh số từ 1 đến (2 3 n), mỗi học sinh ngồi một ghế thì xác suất để số ghế của An, Bình, Chi theo thứ tự lập thành một cấp số cộng là 17 1155. Tính số học sinh của lớp. + Anh An vay tiền ngân hàng 500 triệu đồng lãi suất là 0,9% / tháng mua nhà và trả góp hàng tháng. Cuối mỗi tháng bắt đầu từ tháng thứ nhất anh trả 10 triệu đồng. Với hình thức hoàn nợ như vậy thì sau bao lâu anh An sẽ trả hết số nợ ngân hàng? + Trong một cuộc thi làm đồ dùng học tập do trường phát động, bạn Minh làm một hình chóp tứ giác đều bằng cách lấy một mảnh tôn hình vuông ABCD có cạnh bằng 5cm (tham khảo hình vẽ). Cắt mảnh tôn theo các tam giác cân AEB BFC CGD DHA và sau đó gò các tam giác AEH BEF CFG DGH sao cho bốn đỉnh A B C D trùng nhau tạo thành khối chóp tứ giác đều. Biết rằng thể tích lớn nhất của khối chóp tứ giác đều tạo thành bằng a b c với abc là các số nguyên dương 2 a b và phân số a c tối giản. Tính giá trị biểu thức abc.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát THPTQG lần 1 lớp 11 môn Toán năm 2019 2020 trường chuyên Vĩnh Phúc
Nội dung Đề khảo sát THPTQG lần 1 lớp 11 môn Toán năm 2019 2020 trường chuyên Vĩnh Phúc Bản PDF Ngày … tháng 11 năm 2019, trường THPT chuyên Vĩnh Phúc tổ chức kỳ thi khảo sát chất lượng các môn thi Trung học Phổ thông Quốc gia lần 1 môn Toán lớp 11 năm học 2019 – 2020. Đề khảo sát THPTQG lần 1 Toán lớp 11 năm 2019 – 2020 trường chuyên Vĩnh Phúc có mã đề 890, đề được biên soạn theo dạng đề trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, đề thi gồm có 05 trang, đây là kỳ thi được tổ chức thường xuyên qua các năm lớp 11 – lớp 11 – lớp 12, nhằm có sự chuẩn bị lâu dài cho kỳ thi THPT Quốc gia môn Toán, đề thi có đáp án. Trích dẫn đề khảo sát THPTQG lần 1 Toán lớp 11 năm 2019 – 2020 trường chuyên Vĩnh Phúc : + Cho các mệnh đề: “Phép biến hình là phép dời hình” (I). “Phép dời hình là phép biến hình” (II). “Phép dời hình là phép đồng dạng” (III). “Phép đồng dạng là phép biến hình” (IV). Các mệnh đề đúng là? + Đồ thị của hàm số y = x^2 + 4x + 2 có được từ đồ thị hàm số y = x^2 – 4x + 4 như thế nào? A. Sang phải bốn đơn vị và lên trên hai đơn vị. B. Sang trái bốn đơn vị và xuống dưới hai đơn vị. C. Sang trái bốn đơn vị và lên trên hai đơn vị. D. Sang phải bốn đơn vị và xuống dưới hai đơn vị. [ads] + Cho tam giác ABC, D(1;-1) là chân đường phân giác của góc A, AB có phương trình 3x + 2y – 9 = 0, tiếp tuyến tại A của đường tròn ngoại tiếp tam giác có phương trình ∆: x + 2y – 7 = 0. Phương trình BC là ax + by + c = 0 với a, b, c là các số nguyên không có ước chung khác ±1. Tính a – b + c. + Thực hiện liên tiếp hai phép đối xứng tâm sẽ cho kết quả là: A. Một phép vị tự. B. Một phép tịnh tiến. C. Một phép đối xứng trục. D. Một phép đối xứng tâm. + Cho một tam giác vuông. Nếu tăng mỗi cạnh lên 2cm thì diện tích tăng 19cm2. Nếu giảm các cạnh góc vuông đi 3cm và 1cm thì diện tích giảm đi 12cm2. Tính chu vi tam giác ban đầu? File WORD (dành cho quý thầy, cô):
Đề khảo sát chất lượng lần 1 lớp 11 môn Toán năm 2019 2020 trường Lê Xoay Vĩnh Phúc
Nội dung Đề khảo sát chất lượng lần 1 lớp 11 môn Toán năm 2019 2020 trường Lê Xoay Vĩnh Phúc Bản PDF Đề khảo sát chất lượng lần 1 Toán lớp 11 năm 2019 – 2020 trường Lê Xoay – Vĩnh Phúc mã đề 132, đề gồm 6 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian làm bài 90 phút, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 1 năm học 2019 – 2020. Trích dẫn đề khảo sát chất lượng lần 1 Toán lớp 11 năm 2019 – 2020 trường Lê Xoay – Vĩnh Phúc : + Xét hai phép biến hình sau: (I) Phép biến hình F1 biến mỗi điểm M(x;y) thành điểm M'(-y;x). (II) Phép biến hình F2 biến mỗi điểm M(x;y) thành điểm M'(2x;2y). Phép biến hình nào trong hai phép biến hình trên là phép dời hình? A. Không có phép biến hình nào. B. Chỉ phép biến hình (I). C. Chỉ phép biến hình (II). D. Cả hai phép biến hình (I) và (II). + Trong mặt phẳng tọa độ Oxy cho đường thẳng d: 5x – 2y – 19 = 0 và đường tròn (C): x^2 + y^2 – 4x – 2y = 0. Gọi M là một điểm thuộc đường thẳng d và có tung độ âm. Biết rằng từ điểm M kẻ được hai tiếp tuyến MA, MB tới đường tròn (C) (A, B là hai tiếp điểm) sao cho AB = √10. Gọi I(a;b) là tâm đường tròn ngoại tiếp tam giác ABM. Tính a + b? [ads] + Đường thẳng d: xcosa + ysina + 2sina – 3cosa + 4 = 0 (a là tham số) luôn tiếp xúc với đường tròn nào trong các đường tròn sau đây? A. Đường tròn tâm I(3;-2) bán kính R = 4. B. Đường tròn tâm I(-3;-2) bán kính R = 4 . C. Đường tròn tâm O(0;0) bán kính R = 1. D. Đường tròn tâm I(-3;2) bán kính R = 4. + Trong mặt phẳng Oxy cho elip (E): x^2/25 + y^2/9 = 1 và bốn mệnh đề sau: (I) Elip (E) có các tiêu điểm F1(-4;0) và F2(4;0). (II) Elip (E) có tiêu cự bằng 8. (III) Elip (E) nhận điểm A(-5;0) là đỉnh. (IV) Elip (E) có độ dài trục nhỏ bằng 3. Có tất cả bao nhiêu mệnh đề đúng trong các mệnh đề trên? + Cho hình chữ nhật có O là giao điểm hai đường chéo. Hỏi có tất cả bao nhiêu phép quay tâm O góc quay a (0 ≤ a ≤ 3pi) biến hình chữ nhật trên thành chính nó?
Đề khảo sát lần 1 lớp 11 môn Toán năm 2019 2020 trường Nguyễn Đăng Đạo Bắc Ninh
Nội dung Đề khảo sát lần 1 lớp 11 môn Toán năm 2019 2020 trường Nguyễn Đăng Đạo Bắc Ninh Bản PDF Ngày … tháng 10 năm 2019, trường THPT Nguyễn Đăng Đạo, tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng môn Toán lần thứ nhất dành cho học sinh khối 11, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 1 năm học 2019 – 2020. Đề khảo sát lần 1 Toán lớp 11 năm 2019 – 2020 trường Nguyễn Đăng Đạo – Bắc Ninh có mã đề 001, đề gồm 50 câu trắc nghiệm thuộc chương trình Toán lớp 10 và chương trình Toán lớp 11 đã học, thời gian làm bài 90 phút. Trích dẫn đề khảo sát lần 1 Toán lớp 11 năm 2019 – 2020 trường Nguyễn Đăng Đạo – Bắc Ninh : + Một cửa hàng mua sách từ nhà xuất bản với giá 3USD/ cuốn. Cửa hàng bán sách với giá 15USD/ cuốn, tại giá bán này mỗi tháng cửa hàng sẽ bán được 200 cuốn. Cửa hàng có kế hoạch giảm giá để kích thích sức mua và họ ước tính rằng cứ giảm đi 1 USD/ cuốn thì mỗi tháng sẽ bán nhiều hơn 20 cuốn. Hỏi rằng cửa hàng nên bán sách với giá bao nhiêu một cuốn để thu được lợi nhuận một tháng là nhiều nhất? [ads] + Cho tứ diện ABCD. Gọi E, F lần lượt là trung điểm của các cạnh AB, CD. Điểm G là trọng tâm tam giác BCD. Khi đó giao điểm của đường thẳng EG và mp (ACD) là: A. Điểm F. B. Giao điểm của đường thẳng EG và CD. C. Giao điểm của đường thẳng EG và AC. D. Giao điểm của đường thẳng EG và AF. + Trong mặt phẳng tọa độ Oxy, cho hình thang cân ABCD (AB // CD và AB > CD) có AD = DC, D(3;3). Đường thẳng AC có phương trình x – y – 2 = 0, đường thẳng AB đi qua M(-1;-1). Biết phương trình đường thẳng BC có dạng ax + by + c = 0 với a, b, c thuộc Z và a, b, c đôi một nguyên tố cùng nhau, c < 0. Tính a + b + c? File WORD (dành cho quý thầy, cô):
Đề khảo sát lớp 11 môn Toán lần 1 năm 2019 2020 trường THPT Lương Tài 2 Bắc Ninh
Nội dung Đề khảo sát lớp 11 môn Toán lần 1 năm 2019 2020 trường THPT Lương Tài 2 Bắc Ninh Bản PDF Nhằm mục đích kiểm tra đánh giá giai đoạn giữa học kỳ 1, Chủ Nhật ngày 27 tháng 10 năm 2019, trường THPT Lương Tài số 2, tỉnh Bắc Ninh tổ chức kiểm tra khảo sát chất lượng lần thứ nhất môn Toán lớp 11 năm học 2019 – 2020. Đề khảo sát Toán lớp 11 lần 1 năm 2019 – 2020 trường THPT Lương Tài 2 – Bắc Ninh với 50 câu trắc nghiệm thuộc các nội dung Toán lớp 11 đã học, đề gồm 04 trang, thời gian làm bài 90 phút, đề kiểm tra có đáp án. Trích dẫn đề khảo sát Toán lớp 11 lần 1 năm 2019 – 2020 trường THPT Lương Tài 2 – Bắc Ninh : + Đường tròn sẽ không thay đổi bán kính khi ta thực hiện liên tiếp các phép nào sau đây: A. Thực hiện phép đồng dạng tỉ số k = 2 rồi thực hiện liên tiếp phép dời hình bất kỳ. B. Thực hiện phép quay rồi thực hiện liên tiếp phép đồng dạng bất kỳ. C. Thực hiện phép vị tự tỉ số k = -1 rồi thực hiện liên tiếp phép đồng dạng tỉ số k = 2. D. Thực hiện phép dời hình bất kỳ rồi thực hiện liên tiếp phép vị tự tỉ số k = -1. [ads] + Cho 10 câu hỏi trong đó có 4 câu lý thuyết và 6 câu bài tập, người ta cấu tạo thành các đề thi. Biết rằng trong đề thi phải gồm 3 câu hỏi trong đó có ít nhất 1 câu lý thuyết và 1 câu hỏi bài tập. Hỏi có thể tạo được bao nhiêu đề như trên? + Cho đường tròn (C): x^2 + y^2 = 2. Phép vị tự tâm I(a;b) tỉ số k = -2 biến đường tròn (C) thành đường tròn (T) sao cho (C) và (T) tiếp xúc ngoài. Tìm tất cả các giá trị tham số m để trên đường thẳng x – y + m = 0 tồn tại duy nhất tâm vị tự I như trên. File WORD (dành cho quý thầy, cô):