Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Đạ Tẻh Lâm Đồng

Nội dung Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Đạ Tẻh Lâm Đồng Bản PDF - Nội dung bài viết Giới thiệu Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Đạ Tẻh Lâm Đồng Giới thiệu Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Đạ Tẻh Lâm Đồng Chào mừng đến với bài thi chọn học sinh giỏi cấp huyện môn Toán lớp 9 năm học 2022 - 2023 do phòng Giáo dục và Đào tạo huyện Đạ Tẻh, tỉnh Lâm Đồng tổ chức. Đề thi này mang đến cho các em học sinh lớp 9 một cơ hội thử thách và phấn đấu để phát triển tài năng toán học của mình. Bài toán đầu tiên đưa ra tình huống thú vị giữa hai bạn thân An và Bình. An muốn đến nhà Bình chơi nhưng không nhớ số nhà. Bình cung cấp cho An bốn thông tin về số nhà của mình, trong đó có ba thông tin đúng và một thông tin sai. Hãy giúp An tìm ra đúng số nhà của Bình bằng cách suy luận logic và khéo léo. Bài toán thứ hai liên quan đến việc xử lý hình ảnh và tính toán diện tích. Chiếc logo được thiết kế từ ba hình chữ nhật cùng kích thước, sau đó được cắt thành ba phần A, B và C. Nhiệm vụ của bạn là tính diện tích của phần A, giúp bạn hiểu rõ hơn về khái niệm diện tích và tư duy hình học. Cuối cùng, bài toán cuối cùng hướng bạn vào việc giải quyết vấn đề liên quan đến diện tích hình học của một thửa ruộng hình chữ nhật. Đây là một bài toán thực tế, yêu cầu bạn áp dụng kiến thức và logic để giải quyết. Hy vọng rằng các em sẽ vượt qua thử thách này với sự tự tin, kiên nhẫn và sự cố gắng, từ đó nâng cao kiến thức và kỹ năng toán học của mình. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 9 năm 2020 - 2021 sở GDĐT thành phố Đà Nẵng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi học sinh giỏi Toán 9 năm học 2020 – 2021 sở GD&ĐT thành phố Đà Nẵng. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT thành phố Đà Nẵng : + Một số tự nhiên có ba chữ số có tổng chữ số hàng trăm với chữ số hàng đơn vị bằng 9 và nếu đổi chỗ hai chữ số hàng trăm và hàng đơn vị cho nhau thì được số mới có ba chữ số nhỏ hơn số ban đầu là 99. Tim số đã cho, biết rằng số đó chia hết cho 18. + Cho tam giác ABC nhọn có hai đường cao BD, CE cắt nhau tại H. Gọi F là hình chiếu vuông góc của H trên BC, M là tiếp điểm của EF với đường tròn nội tiếp tam giác DEF, I là giao điểm (khác F) của HF với đường tròn đường kính DF và N là giao điểm của IM với ED. a) Chứng minh rằng ba điểm A, H, F thẳng hàng và BE.BA + CD.CA = BC2. b) Chứng minh rằng hai đường thẳng ED và HN vuông góc với nhau. c) Cho BAC = 60° và bán kính đường tròn (O) ngoại tiếp tam giác ABC bằng R. Gọi K là điểm thay đổi trên cung nhỏ BC của đường tròn (O) và P, Q lần lượt là hình chiếu vuông góc của K trên AB và AC. Khi PQ lớn nhất, hãy tính diện tích của tam giác OPQ theo R. + Trong mặt phẳng toạ độ Oxy (O là gốc toạ độ), cho hình bình hành OABC có điểm A(3;5), điểm C thuộc đường thẳng y = -x và có hoành độ dương. Biết rằng diện tích của hình bình hành OABC bằng 24. Tìm toạ độ điểm B.
Đề thi học sinh giỏi tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Hải Dương
Thứ Tư ngày 27 tháng 01 năm 2021, sở Giáo dục và Đào tạo UBND tỉnh Hải Dương tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 bậc THCS năm học 2020 – 2021. Đề thi học sinh giỏi tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Hải Dương gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút (không kể thời gian giao đề). Trích dẫn đề thi học sinh giỏi tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Hải Dương : + Tìm các số nguyên x, y thỏa mãn đẳng thức: 2×2 + y2 + 3xy + 3x + 2y + 3 = 0. + Cho a, b, c là các số nguyên thỏa mãn: (a – b)(b – c)(c – a) = a + b + c. Chứng minh a + b + c chia hết cho 27. + Cho đường tròn (O;R) và một điểm A nằm ngoài đường tròn (O;R). Qua A lần lượt kẻ các tiếp tuyến AB, AC đến đường tròn (O;R) (B, C là các tiếp điểm). Lấy điểm D thuộc đường tròn (O;R) sao cho BD song song với AO, đường thẳng AD cắt đường tròn (O;R) tại điểm thứ hai là E. Gọi M là trung điểm của AC. a. Chứng minh ME là tiếp tuyến của đường tròn (O;R). b. Từ D kẻ tiếp tuyến với đường tròn (O;R), tiếp tuyến này cắt ME tại T. Gọi r1, r2, r3 lần lượt là bán kính các đường tròn nội tiếp của OME, OTE, OMT. Chứng minh khi A thay đổi thì r1 + r2 + r3 luôn không đổi.
Đề thi học sinh giỏi Toán 9 năm 2020 - 2021 phòng GDĐT thị xã Hoài Nhơn - Bình Định
Thứ Sáu ngày 04 tháng 12 năm 2020, phòng Giáo dục và Đào tạo thị xã Hoài Nhơn, tỉnh Bình Định tổ chức kỳ thi chọn học sinh giỏi lớp 9 môn Toán năm học 2020 – 2021. Đề thi học sinh giỏi Toán 9 năm 2020 – 2021 phòng GD&ĐT thị xã Hoài Nhơn – Bình Định gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2020 – 2021 phòng GD&ĐT thị xã Hoài Nhơn – Bình Định : + Cho nửa đường tròn tâm O đường kính AB. Gọi I là một điểm trên nửa đường tròn tâm O (I khác A và B). Vẽ đường tròn tâm I tiếp xúc với AB tại H. Từ A và B vẽ hai tiếp tuyến với đường tròn tâm I, tiếp xúc với đường tròn tâm I lần lượt tại C và D. a) Chứng minh C, I, D thẳng hàng. b) Chứng minh AC.BD = CD^2/4. + Cho tam giác ABC có đường phân giác trong AD (D thuộc BC) sao cho BD = a và CD = b (với a > b). Tiếp tuyến tại A của đường tròn ngoại tiếp tam giác ABC cắt tia BC tại M. Tính MA theo a và b. + Cho nửa đường tròn tâm O, đường kính AB = 2R và M là một điểm thuộc nửa đường tròn (khác A và B). Tiếp tuyến của (O) tại M cắt các tiếp tuyến tại A và B của (O) lần lượt tại các điểm C và D. Tìm giá trị nhỏ nhất của tổng diện tích của hai tam giác ACM và BDM.
Đề thi chọn HSG Toán 9 năm 2020 - 2021 phòng GDĐT thành phố Hải Dương
Thứ Ba ngày 05 tháng 12 năm 2020, phòng Giáo dục và Đào tạo UBND thành phố Hải Dương tổ chức kỳ thi chọn học sinh giỏi lớp 9 môn Toán năm học 2020 – 2021. Đề thi chọn HSG Toán 9 năm 2020 – 2021 phòng GD&ĐT thành phố Hải Dương gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi chọn HSG Toán 9 năm 2020 – 2021 phòng GD&ĐT thành phố Hải Dương : + Cho a; b; c; d là các số nguyên thỏa mãn: 3a5 + 3b5 – 2c5 – 7d5 = 0. Chứng minh rằng: a + b – 4c – 9d chia hết cho 5. + Tìm các số tự nhiên x; y; z sao cho x3 + y3 = 2z3 và x + y + z là số nguyên tố. + Cho đường tròn tâm O đường kính BC = 2R. Lấy điểm H bất kỳ thuộc BC (H khác B, H khác C). Kẻ dây AF của đường tròn đi qua H và vuông góc với BC. Gọi AD là đường phân giác của tam giác ABC. a) Lấy điểm I thuộc HF, tia BI cắt (O) tại điểm thứ hai là K. Chứng minh rằng: BI.BK = AB^2. b) Chứng minh rằng: 2AH^2/AD^2 = 1 + 2AH/BC. c) Khi tam giác ABH có diện tích lớn nhất, tính góc ACB.