Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi Olympic Toán 8 năm 2021 - 2022 trường THCS Tây Sơn - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olympic môn Toán 8 năm học 2021 – 2022 trường THCS Tây Sơn, quận Hai Bà Trưng, thành phố Hà Nội. Trích dẫn đề thi Olympic Toán 8 năm 2021 – 2022 trường THCS Tây Sơn – Hà Nội : + Cho tam giác ABC vuông tại A (AB < AC) và đường cao AH. a) Chứng minh: AC2 = BC.HC. b) Lấy điểm I thuộc AH. Kẻ đường thẳng đi qua B và vuông góc với CI tại K. Chứng minh rằng CH.CB = CI.CK. c) Tia BK cắt tia HA tại D. Chứng minh rằng BHK = BDC. d) Trên tia đối của tia KC lấy điểm M sao cho BM = BA. Chứng minh BMD = 90°. + Cho hai biểu thức a) Tính P = AB. b) Tìm các giá trị nguyên của x để P là số tự nhiên. c) Tìm tất cả các giá trị của m để phương trình P = m có nghiệm dương duy nhất. + Tìm giá trị lớn nhất của biểu thức A = 8 – x4 + 2×2.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi huyện Toán 8 năm 2013 - 2014 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 8 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 8 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình : + Chứng minh rằng số có dạng 43 2 An n n n 6 11 6 chia hết cho 24 với mọi số tự nhiên n. + Đa thức f(x) khi chia cho x 1 dư 4, khi chia cho 2x 1 dư 2 3 x. Tìm phần dư khi chia f(x) cho 2 1 1 x x. + Cho hình vuông ABCD cạnh a, lấy điểm M bất kỳ trên cạnh BC (M khác B và C). Qua B kẻ đường thẳng vuông góc với đường thẳng DM tại H, kéo dài BH cắt đường thẳng DC tại K. 1. Chứng minh KM vuông góc với DB. 2. Chứng minh rằng: KC.KD = KH.KB. 3. Ký hiệu ABM DCM S S lần lượt là diện tích các tam giác ABM và DCM. a) Chứng minh tổng ABM DCM S S không đổi. b) Xác định vị trí của điểm M trên cạnh BC để 2 2 ABM DCM S S đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó theo a.