Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 12 lần 1 năm 2022 - 2023 trường THPT Yên Định 2 - Thanh Hóa

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng môn Toán 12 (chương trình chuẩn) lần 1 năm học 2022 – 2023 trường THPT Yên Định số 2, tỉnh Thanh Hóa; kỳ thi nhằm kiểm tra kiến thức môn Toán tổng quát đối với học sinh lớp 12, giúp các em rèn luyện để chuẩn bị cho kì thi tốt nghiệp Trung học Phổ thông năm 2023; đề thi có đáp án mã đề 096. Trích dẫn Đề khảo sát Toán 12 lần 1 năm 2022 – 2023 trường THPT Yên Định 2 – Thanh Hóa : + Ông Nam cần xây một bể đựng nước mưa có thể tích 3 V m 8 dạng hình hộp chữ nhật với chiều dài gấp 4 3 lần chiều rộng, đáy và nắp đổ bê tông, cốt thép; xung quanh xây bằng gạch và xi măng. Biết rằng chi phí trung bình là 980.000 đ 2 m và ở nắp để hở một khoảng hình vuông có diện tích bằng 2 9 diện tích nắp bể. Tính chi phí thấp nhất mà ông Nam phải chi trả (làm tròn đến hàng nghìn). A. 22.770.000 đ B. 22.000.000 đ C. 20.965.000 đ D. 23.235.000 đ. + Cho a b là các số thực thay đổi thỏa mãn 2 2 20 log 6 8 4 1 a b a b và c d là các số thực dương thay đổi thỏa mãn 2 2 2 log 7 2 2 3 c c c d d d. Giá trị nhỏ nhất của biểu thức 2 2 ac bd 1 là? + Cho khối lăng trụ tam giác ABC A B C có thể tích V. Gọi MNP lần lượt là trung điểm của các cạnh A B BC CC. Mặt phẳng MNP chia khối lăng trụ đã cho thành 2 phần, phần chứa điểm B có thể tích là V1. Tỉ số V1 V bằng?

Nguồn: toanmath.com

Đọc Sách

Đề đánh giá chất lượng lớp 12 môn Toán năm 2021 2022 trường Đại học Hồng Đức Thanh Hóa
Nội dung Đề đánh giá chất lượng lớp 12 môn Toán năm 2021 2022 trường Đại học Hồng Đức Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi đánh giá chất lượng môn Toán lớp 12 năm học 2021 – 2022 trường Đại học Hồng Đức, tỉnh Thanh Hóa; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề đánh giá chất lượng Toán lớp 12 năm 2021 – 2022 trường Đại học Hồng Đức – Thanh Hóa : + Cho hình nón đỉnh S có độ dài đường cao là R và đáy là đường tròn tâm O bán kính R. Gọi (d) là tiếp tuyến của đường tròn đáy tại A và (P) là mặt phẳng chứa SA và (d). Mặt phẳng (Q) thay đổi qua S cắt đường tròn O tại hai điểm C, D sao cho CD = √3R. Gọi α là góc tạo bởi (P) và (Q). Tính giá trị lớn nhất của cos α. + Cho hàm số f(x) = x3 + ax2 + bx + c (a, b, c ∈ R) có hai điểm cực trị là −1 và 1. Gọi y = g(x) là hàm số bậc hai có đồ thị cắt trục hoành tại hai điểm có hoành độ trùng với các điểm cực trị của f(x), đồng thời có đỉnh nằm trên đồ thị của f(x) với tung độ bằng 2. Diện tích hình phẳng giới hạn bởi hai đường y = f(x) và y = g(x) gần với giá trị nào nhất dưới đây? + Cho hàm đa thức y = fx2 + 2x có đồ thị cắt trục Ox tại 5 điểm phân biệt như hình vẽ. Hỏi có bao nhiêu giá trị của tham số m với 2022m ∈ Z để hàm số g (x) = fx2 − 2 |x − 1| − 2x + m có 9 điểm cực trị?
Đề khảo sát chất lượng lớp 12 môn Toán (đợt 2) năm 2021 2022 sở GD ĐT Thanh Hóa
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán (đợt 2) năm 2021 2022 sở GD ĐT Thanh Hóa Bản PDF Nhằm giúp các em học sinh lớp 12 rèn luyện để hướng đến kỳ thi tốt nghiệp Trung học Phổ thông năm 2022, sáng thứ Ba ngày 26 tháng 04 năm 2022, sở Giáo dục và Đào tạo tỉnh Thanh Hóa tổ chức kỳ thi khảo sát chất lượng học sinh lớp 12 môn Toán năm học 2021 – 2022 lần thứ hai. Đề khảo sát chất lượng Toán lớp 12 (đợt 2) năm 2021 – 2022 sở GD&ĐT Thanh Hóa mã đề 101 gồm 06 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút (không kể thời gian giáo viên coi thi phát đề). Trích dẫn đề khảo sát chất lượng Toán lớp 12 (đợt 2) năm 2021 – 2022 sở GD&ĐT Thanh Hóa : + Trên tập hợp các số phức, xét phương trình z2 – 2z – m + 2 = 0 (m là tham số thực). Gọi T là tập hợp các giá trị của m để phương trình trên có hai nghiệm phân biệt được biểu diễn hình học bởi hai điểm A và B trên mặt phẳng tọa độ sao cho diện tích tam giác ABC bằng 2/2 với C(-1;1). Tổng các phần tử trong T bằng? + Cho hình trụ có O và O’ là tâm của hai đáy. Xét hình chữ nhật ABCD có A và B cùng thuộc đường tròn (O) và C và D cùng thuộc đường tròn (O’) sao cho AB = 3/3, BC = 6; đồng thời mặt phẳng (ABCD) tạo với mặt phẳng đáy hình trụ góc 60°. Thể tích khối trụ bằng? + Trong không gian Oxyz, cho mặt phẳng (P): x + y – 2z + 10 = 0 và hai điểm A(1;-1;2), B(2;0;-4). Gọi M(a;b;c) là điểm thuộc đoạn thẳng AB sao cho luôn tồn tại hai mặt cầu có bán kính R = 6 tiếp xúc với mặt phẳng (P), đồng thời tiếp xúc với đoạn thẳng AB tại M. Gọi T = [m;n) là tập giá trị của biểu thức 25a2 + b2 + 2c2. Tổng m + n bằng?