Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cương ôn thi tốt nghiệp THPT năm 2022 môn Toán - Nguyễn Hoàng Việt

Đề cương ôn thi tốt nghiệp THPT năm 2022 môn Toán gồm 193 trang, được biên soạn bởi thầy giáo Th.S Nguyễn Hoàng Việt (giáo viên Toán trường THPT Lương Thế Vinh, tỉnh Quảng Bình). MỤC LỤC : Câu 39 1. Câu 40 12. + Dạng 1. Sự tương giao biết đồ thị hàm f(x) – loại không có tham số m 12. + Dạng 2. Sự tương giao biết đồ thị hàm f(x) – Loại có tham số m 18. + Dạng 3. Sự tương giao biết đồ thị hàm f(x) – Loại có chứa hàm lượng giác 21. + Dạng 4. Sự tương giao biết bảng biến thiên hàm số f(x) – Loại không có tham số m 23. + Dạng 5. Sự tương giao biết bảng biến thiên hàm số f(x) – Loại có tham số m 32. + Dạng 6. Sự tương giao biết bảng biến thiên hàm số f(x) – Có chứa hàm số lượng giác 34. Câu 41 37. + Dạng 7. Tính nguyên hàm & tích phân sử dụng tính chất và nguyên hàm cơ bản 37. + Dạng 8. Tính nguyên hàm & tích phân bằng phương pháp đổi biến 41. + Dạng 9. Tích phân từng phần 45. + Dạng 10. Tích phân hàm ẩn 50. Câu 42 58. Câu 43 68. + Dạng 11. Tham số m của phương trình bậc hai 68. + Dạng 12. Phương trình đưa về bậc hai 70. + Dạng 13. Tìm số phức thỏa mãn điều kiện cho trước 72. + Dạng 14. Tính toán các yếu tố của số phức (mức vận dụng) 74. + Dạng 15. Bài toán tập hợp điểm 77. Câu 44 81. + Dạng 16. Bài toán min – max với quỹ tích là đường tròn (Phương pháp hình học) 82. + Dạng 17. Bài toán min – max với quỹ tích là đường tròn (Phương pháp đại số) 91. + Dạng 18. Bài toán min – max với quỹ tích là đường thẳng (Phương pháp hình học) 97. + Dạng 19. Bài toán min – max với quỹ tích là đường thẳng (Phương pháp đại số) 100. + Dạng 20. Bài toán min – max với quỹ tích là đường tròn, đường thẳng (Phương pháp hình học) 104. + Dạng 21. Bài toán min – max với quỹ tích là elip 109. + Dạng 22. Bài toán min – max với quỹ tích là pararbol 110. + Dạng 23. Bài toán min – max với quỹ tích là hyperbol 113. Câu 45 115. + Dạng 24. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số f0(x), g0(x) khi biết các cực trị của hàm số f(x) − g(x) hoặc các cực trị của hàm số f0(x) − g0 (x) 116. + Dạng 25. Tính diện tích hình phẳng dựa vào tính chất đồ thị và các hoành độ tiếp điểm 118. + Dạng 26. Ứng dụng diện tích hình phẳng để so sánh giá trị hàm số 120 . + Dạng 27. Ứng dụng diện tích hình phẳng để tính tích phân 123 . Câu 46 126. + Dạng 28. Lập đường thẳng đi qua một điểm A, cắt đường thẳng d1 và song song với mặt phẳng (P) 126. + Dạng 29. Lập đường thẳng d đi qua M, vuông góc với d1 và cắt d2 130. + Dạng 30. Lập đường thẳng – yêu cầu tìm vectơ chỉ phương thông qua giao điểm 131. + Dạng 31. Lập đường thẳng – yêu cầu tìm vectơ chỉ phương thông qua tích có hướng 133. Câu 47 136. + Dạng 32. Khối nón bị cắt bởi một mặt phẳng đi qua đỉnh và không qua trục 136. + Dạng 33. Khối nón nội tiếp, ngoại tiếp khối tròn xoay hoặc khối đa diện 138. + Dạng 34. Khối trụ bị cắt bởi một mặt phẳng song song với trục 139. + Dạng 35. Khối trụ bị cắt bởi mặt phẳng cắt qua trục 140. + Dạng 36. Khối trụ nội tiếp ngoại tiếp khối đa diện hoặc khối tròn xoay 141. + Dạng 37. Mặt cầu ngoại tiếp khối lăng trụ 142. + Dạng 38. Mặt cầu ngoại tiếp khối chóp 143. Câu 48 148. + Dạng 39. Phương trình, bất phương trình có thể chuyển về dạng f(A) = f(B) hoặc f(A) ≤ f(B), trong đó f(x) là hàm số đơn điệu 148. + Dạng 40. Phương trình, bất phương trình f(x, y) = 0 hoặc f(x, y) ≥ 0 có hàm số f(x, y) đơn điệu theo biến x hoặc biến y 156. + Dạng 41. Phương trình, bất phương trình dạng f(x, y) = 0 hoặc f(x, y) ≥ 0, trong đó hàm số f(x, y) có đạo hàm cấp hai theo biến x hoặc biến y không đổi dấu 163. + Dạng 42. Sử dụng bất đẳng thức Bernoulli hoặc ax ≤ mx + n, ∀x ∈ [α; β] 165. Câu 49 167. + Dạng 43. Các bài toán tìm điểm 167. + Dạng 44. Các bài toán lập phương trình mặt cầu 170. + Dạng 45. Các bài toán lập phương trình mặt phẳng 173. Câu 50 178. + Dạng 46. Tìm cực trị của hàm số hợp g(x) = f[u(x)] khi biết đồ thị hàm số f(x) hay BBT hàm số f(x) 178. + Dạng 47. Tìm tham số để hàm số chứa giá trị tuyệt đối đạt giá trị lớn nhất trên một đoạn 184. + Dạng 48. Tìm tham số để hàm số hợp có số điểm cực trị cho trước 184.

Nguồn: toanmath.com

Đọc Sách

Giải bộ đề trắc nghiệm kỳ thi THPT môn Toán Lê Hồng Đức
Nội dung Giải bộ đề trắc nghiệm kỳ thi THPT môn Toán Lê Hồng Đức Bản PDF - Nội dung bài viết Sách giải bộ đề trắc nghiệm kỳ thi THPT môn Toán Lê Hồng Đức Sách giải bộ đề trắc nghiệm kỳ thi THPT môn Toán Lê Hồng Đức Sách giải bộ đề trắc nghiệm kỳ thi THPT môn Toán được biên soạn bởi các tác giả nổi tiếng trong lĩnh vực giáo dục như Lê Hồng Đức, Đỗ Hoàng Hà, Lê Hoàng Nam, Đoàn Minh Châu, Đào Thị Ngọc Hà. Với tổng cộng 252 trang sách, nội dung của cuốn sách tập trung vào việc phân tích và hướng dẫn giải 10 đề thi thử THPT Quốc gia môn Toán một cách chi tiết. Đặc biệt, sách còn cung cấp phương pháp giải nhanh bằng cách sử dụng máy tính Casio, giúp học sinh giải các bài tập một cách hiệu quả và tiết kiệm thời gian. Với những kiến thức bổ ích và phương pháp giải đa dạng, cuốn sách hứa hẹn sẽ là công cụ hữu ích cho những ai đang ôn luyện và chuẩn bị cho kỳ thi THPT sắp tới.
Bài tập củng cố phần 8 – 9 – 10 điểm trong đề thi THPT Quốc gia 2017 môn Toán Lục Trí Tuyên
Nội dung Bài tập củng cố phần 8 – 9 – 10 điểm trong đề thi THPT Quốc gia 2017 môn Toán Lục Trí Tuyên Bản PDF - Nội dung bài viết Bài tập củng cố phần 8 – 9 – 10 điểm trong đề thi THPT Quốc gia 2017 môn Toán Bài tập củng cố phần 8 – 9 – 10 điểm trong đề thi THPT Quốc gia 2017 môn Toán Tài liệu này bao gồm 54 trang tuyển tập các bài toán trắc nghiệm ở mức độ vận dụng và vận dụng cao giúp học sinh củng cố kiến thức cho phần 8 – 9 – 10 điểm trong đề thi THPT Quốc gia 2017 môn Toán. Mỗi bài tập đi kèm đáp án cụ thể, được gạch chân sẵn sàng cho học sinh tự kiểm tra và làm bài.
7 chủ đề chính môn Toán trong đề thi THPT Quốc gia 2017 Lê Đôn Cường
Nội dung 7 chủ đề chính môn Toán trong đề thi THPT Quốc gia 2017 Lê Đôn Cường Bản PDF - Nội dung bài viết Tài liệu tuyển tập bài toán trắc nghiệm chọn lọc môn Toán Đề thi THPT Quốc gia Tài liệu tuyển tập bài toán trắc nghiệm chọn lọc môn Toán Đề thi THPT Quốc gia Đề thi THPT Quốc gia 2017 môn Toán đã chứa đựng trong mình nhiều bí ẩn và thách thức đối với các thí sinh. Để giúp các bạn chuẩn bị tốt cho kỳ thi quan trọng, chúng tôi xin giới thiệu tài liệu gồm 26 trang bài toán trắc nghiệm chọn lọc thuộc 7 chủ đề chính môn Toán trong đề thi. Cụ thể, tài liệu bao gồm: Chủ đề 1: Hàm số và các bài toán liên quan Chủ đề 2: Lũy thừa – mũ & logarit Chủ đề 3: Nguyên hàm – tích phân & ứng dụng Chủ đề 4: Số phức Chủ đề 5: Hình học không gian phần khối đa diện Chủ đề 6: Hình học không gian khối tròn xoay Chủ đề 7: Hình học không gian tọa độ Oxyz Tất cả các bài toán đều được chọn lọc kỹ càng và có đáp án đi kèm, giúp các bạn tự kiểm tra và ôn tập hiệu quả. Với tài liệu này, hy vọng các bạn sẽ tự tin và chuẩn bị tốt nhất cho kỳ thi sắp tới.
Tuyển tập và giải chi tiết các bài toán thực tiễn trong đề thi thử Trần Văn Tài
Nội dung Tuyển tập và giải chi tiết các bài toán thực tiễn trong đề thi thử Trần Văn Tài Bản PDF - Nội dung bài viết Tuyển tập và giải chi tiết các bài toán thực tiễn trong đề thi thử Trần Văn Tài Tuyển tập và giải chi tiết các bài toán thực tiễn trong đề thi thử Trần Văn Tài Tuyển tập này bao gồm 174 trang chứa các bài toán ứng dụng thực tiễn được chọn lọc từ các đề thi thử THPT Quốc gia năm 2017, kèm theo lời giải chi tiết. Các bài toán được phân loại thành các chủ đề sau: + Chủ đề 1: Liên quan đến di chuyển và quãng đường đi + Chủ đề 2: Liên quan đến cắt và ghép các khối hình + Chủ đề 3: Liên quan đến lãi suất ngân hàng và trả góp + Chủ đề 4: Bài toán tăng trưởng + Chủ đề 5: Bài toán tối ưu chi phí sản xuất + Chủ đề 6: Bài toán thực tế về min - max Ví dụ về một bài toán trong tuyển tập: Một kho hàng cần được chuyển từ vị trí A trên bến cảng tới kho C trên một đảo. Khoảng cách ngắn nhất từ kho C đến bờ biển AB là 60km, trong khi khoảng cách giữa hai điểm A và B là 130km. Chi phí vận chuyển hàng bằng đường bộ là 300.000 đồng/km, và bằng đường thủy là 500.000 đồng/km. Ta cần chọn điểm trung chuyển hàng D cách kho A một khoảng bao nhiêu để tổng chi phí vận chuyển hàng từ A đến C là ít nhất? Tuyển tập này cung cấp cách tiếp cận bài toán một cách logic và chi tiết, giúp học sinh hiểu rõ các bước giải quyết và áp dụng vào thực tế.Đây sẽ là tài liệu hữu ích cho những ai muốn nâng cao kỹ năng giải bài toán và làm quen với các dạng bài thi thử thực tế.