Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn đội tuyển dự thi HSG Quốc gia năm 2018 2019 môn Toán sở GD và ĐT Hà Tĩnh

Nội dung Đề thi chọn đội tuyển dự thi HSG Quốc gia năm 2018 2019 môn Toán sở GD và ĐT Hà Tĩnh Bản PDF Đề thi chọn đội tuyển dự thi HSG Quốc gia năm 2018 – 2019 môn Toán sở GD và ĐT Hà Tĩnh gồm 2 bài thi diễn ra trong hai ngày 20 và 21 tháng 9 năm 2018, đề thứ nhất gồm 4 bài toán tự luận, đề thứ hai gồm 4 bài toán tự luận, mỗi bài thi diễn ra trong thời gian 180 phút, đề thi có lời giải chi tiết và thang tính điểm. Trích dẫn đề thi chọn đội tuyển dự thi HSG Quốc gia năm 2018 – 2019 môn Toán sở GD và ĐT Hà Tĩnh : + Cho một khung sắt có hình dạng là một tứ diện đều mỗi cạnh có độ dài 1 mét. Một con bọ ban đầu ở tại một đỉnh của tứ diện, bắt đầu di chuyển liên tục trên các cạnh của tứ diện theo quy tắc: tại mỗi đỉnh nó đến, nó sẽ chọn một trong ba cạnh tại đỉnh đó và di chuyển theo cạnh đó đến đỉnh tiếp theo. Với mỗi số nguyên dương n, tìm số cách đi của con bọ để nó trở lại đúng đỉnh ban đầu sau khi đã đi được đúng n mét. [ads] + Cô giáo có tất cả 2020 viên kẹo gồm 20 loại kẹo khác nhau, mỗi loại ít nhất có 2 viên kẹo. Cô chia hết kẹo cho các học sinh của mình, mỗi người một số viên kẹo và không có học sinh nào nhận được nhiều hơn một viên kẹo ở một loại kẹo. Cô yêu cầu hai học sinh khác nhau bất kì so sánh các viên kẹo mình nhận được và viết số loại kẹo mà cả hai cùng có lên bảng. Biết rằng mỗi cặp học sinh bất kì đều được lên bảng đúng một lần. Gọi tổng các số được viết lên bảng là M. Xác định giá trị nhỏ nhất của M. Với giả thiết tương tự nhưng thay 20 loại kẹo khác nhau bởi 19 loại kẹo khác nhau, hãy tìm giá trị nhỏ nhất của M trong trường hợp tương ứng này. + Cho k là số tự nhiên lớn hơn 1. Xét dãy số (an) xác định bởi: a0 = 0, a1 = 1 và an+1 = kan + an-1 với mọi n ∈ N*. Xác định tất cả các giá trị của k sao cho tồn tại các số tự nhiên m, n (với m ≠ n) và các số nguyên dương p, q thỏa mãn điều kiện: am + kap = an + kaq.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG cấp tỉnh Toán 12 năm học 2017 - 2018 sở GD và ĐT Bình Phước
Đề thi chọn HSG cấp tỉnh Toán 12 năm học 2017 – 2018 sở GD và ĐT Bình Phước gồm 6 bài toán tự luận, có lời giải chi tiết và thang điểm. Đề thi dành cho cả khối lớp THPT và GDTX. Trích dẫn đề thi : + Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD có A(-1; 2). Gọi M N, lần lượt là trung điểm của các cạnh CD và AD, K là giao điểm của BM với CN. Viết phương trình của đường tròn ngoại tiếp tam giác BNK, biết đường thẳng BM có phương trình 2x + y – 8 = 0 và điểm B có hoành độ lớn hơn 2. [ads] + Cho đường tròn (O) đường kính AB, một đường thẳng d không có điểm chung với đường tròn (O) và d vuông góc với AB kéo dài tại K (B nằm giữa A và K). Gọi C là một điểm nằm trên đường tròn (O), (C khác A và B). Gọi D là giao điểm của AC và d, từ D kẻ tiếp tuyến DE với đường tròn (E là tiếp điểm và E, C nằm về hai phía của đường kính AB). Gọi F là giao điểm của EB và d, G là giao điểm của AF và (O), H là điểm đối xứng của G qua AB. Chứng minh ba điểm F, C, H thẳng hàng. + Cho hình chóp S.ABCD có đáy ABCD là hình thang với, AB = AD = a, CD = 2a. Biết rằng hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng đáy, góc giữa mặt phẳng (SBC) và mặt đáy bằng 45 độ. Tính theo a thể tích của khối chóp S.ABCD và khoảng cách giữa hai đường thẳng SD và BC.
Đề thi chọn HSG Toán 12 THPT năm học 2017 - 2018 sở GD và ĐT Vĩnh Phúc
Đề thi chọn HSG Toán 12 THPT năm học 2017 – 2018 sở GD và ĐT Vĩnh Phúc gồm 10 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi : + Cường độ động đất M được cho bởi công thức M = logA – logA0 trong đó A là biên độ rung chấn tối đa, A0 là biên độ chuẩn (hằng số). Một trận động đất ở Xan Phranxixcô có cường độ 8 độ richter, trong cùng năm đó một trận động đất khác ở gần đó đo được cường độ là 6 độ richter. Hỏi trận động đất ở Xan Phranxixcô có biên độ rung chấn tối đa gấp bao nhiêu lần biên độ rung chấn tối đa của trận động đất kia? [ads] + Trong không gian cho 2n điểm phân biệt (n > 4, n ∈ N), trong đó không có ba điểm nào thẳng hàng và trong 2n điểm đó có đúng n điểm cùng nằm trên một mặt phẳng. Tìm tất cả các giá trị của n sao cho từ 2n điểm đã cho tạo ra đúng 505 mặt phẳng phân biệt. + Cho hàm số y = (x + 1)/(x + 2) có đồ thị (C) và đường thẳng d: y = -2x + m – 1 (m là tham số thực). Chứng minh rằng với mọi m, đường thẳng d luôn cắt (C) tại hai điểm phân biệt A, B. Gọi k1, k2 lần lượt là hệ số góc của tiếp tuyến với (C) tại A và B. Xác định m để biểu thức (3k1 + 1)^2.(3k2 + 1)^2 đạt giá trị nhỏ nhất.
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 THPT học 2017 - 2018 sở GD và ĐT Thừa Thiên Huế
Đề thi chọn học sinh giỏi cấp tỉnh môn Toán 12 THPT học 2017 – 2018 sở GD và ĐT Thừa Thiên Huế gồm 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết .
Đề thi thử HSG Toán 12 THPT năm học 2017 - 2018 trường THPT Bình Xuyên - Vĩnh Phúc
Đề thi thử HSG Toán 12 THPT năm học 2017 – 2018 trường THPT Bình Xuyên – Vĩnh Phúc gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Trong mặt phẳng với hệ trục tọa độ vuông góc Oxy, cho đường tròn (C) và đường thẳng (d) lần lượt có phương trình (x – 2)^2 + (y + 1)^2 = 8 và x – 2y + 3 = 0. Cho hình thoi ABCD ngoại tiếp đường tròn (C) và điểm A thuộc đường thẳng (d). Hãy tìm tọa độ các đỉnh A, B, C, D biết rằng BD = 2AC và tung độ của điểm A không nhỏ hơn 2. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình vuông và tam giác SAB là tam giác cân tại đỉnh S. Góc giữa đường thẳng SAvà mặt phẳng đáy bằng 45 độ, góc giữa mặt phẳng (SAB) và mặt phẳng đáy bằng 60 độ. Tính thể tích khối chóp S.ABCD biết rằng khoảng cách giữa hai đường thẳng CD và SA bằng a√6. + Cho hàm số y = (x – 2)/(x – 1) có đồ thị (C). Hãy lập phương trình đường thẳng (d) đi qua điểm M (3; -1) và cắt đồ thị (C) tại hai điểm phân biệt A, B sao cho MB = 3.MA.