Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp giải các dạng toán chuyên đề phân số

Tài liệu gồm 75 trang, được biên soạn bởi thầy giáo Ngô Nguyễn Thanh Duy, phân dạng và hướng dẫn giải các dạng toán chuyên đề phân số trong chương trình Số học 6. Khái quát nội dung tài liệu phương pháp giải các dạng toán chuyên đề phân số: BÀI 1 . MỞ RỘNG KHÁI NIỆM PHÂN SỐ. + Dạng 1. Biểu diễn phân số của một hình cho trước. + Dạng 2. Viết các phân số. + Dạng 3. Tính giá trị của phân số. + Dạng 4. Biểu thị các số đo theo đơn vị này dưới dạng phân số theo đơn vị khác. + Dạng 5. Viết tập hợp các số nguyên “kẹp” giữa hai phân số có tử là bội của mẫu. + Dạng 6. Tìm điều kiện để phân số tồn tại. Điều kiện để phân số có giá trị là số nguyên. BÀI 2 . PHÂN SỐ BẰNG NHAU. + Dạng 1. Nhận biết các cặp phân số bằng nhau, không bằng nhau. + Dạng 2. Tìm số chưa biết trong đẳng thức của hai phân số. + Dạng 3. Lập các cặp phân số bằng nhau từ một đẳng thức cho trước. BÀI 3 . TÍNH CHẤT CƠ BẢN CỦA PHÂN SỐ. + Dạng 1. Áp dụng tính chất cơ bản của phân số để viết các phân số bằng nhau. + Dạng 2. Tìm số chưa biết trong đẳng thức của hai phân số. + Dạng 3. Giải thích lí do bằng nhau của các phân số. BÀI 4 . RÚT GỌN PHÂN SỐ. + Dạng 1. Rút gọn phân số. Rút gọn biểu thức dạng phân số. + Dạng 2. Củng cố khái niệm phân số có kết hợp rút gọn phân số. + Dạng 3. Củng cố khái niệm hai phân số bằng nhau. + Dạng 4. Tìm phân số tối giản trong các phân số cho trước. + Dạng 5. Viết dạng tổng quát của tất cả các phân số bằng một phân số cho trước. + Dạng 6. Chứng minh một phân số là tối giản. BÀI 5 . QUY ĐỒNG MẪU NHIỀU PHÂN SỐ. + Dạng 1. Quy đồng mẫu các phân số cho trước. + Dạng 2. Bài toán đưa về việc quy đồng mẫu nhiều phân số. BÀI 6 . SO SÁNH PHÂN SỐ. + Dạng 1. So sánh các phân số cùng mẫu. + Dạng 2. So sánh các phân số không cùng mẫu. BÀI 7 . PHÉP CỘNG PHÂN SỐ. + Dạng 1. Cộng hai phân số. + Dạng 2. Điền dấu thích hợp vào ô vuông. + Dạng 3. Tìm số chưa biết trong một đẳng thức có chứa phép phép cộng phân số. + Dạng 4. So sánh phân số bằng cách sử dụng phép cộng phân số thích hợp. BÀI 8 . TÍNH CHẤT CƠ BẢN CỦA PHÉP CỘNG PHÂN SỐ. + Dạng 1 . Áp dụng các tính chất của phép cộng để tính nhanh tổng của nhiều phân số. + Dạng 2. Cộng nhiều phân số. + Dạng 3. Rèn luyện kĩ năng cộng hai phân số. BÀI 9 . PHÉP TRỪ PHÂN SỐ. + Dạng 1. Tìm số đối của một số cho trước. + Dạng 2. Trừ một phân số cho một phân số. + Dạng 3. Tìm số hạng chưa biết trong một tổng, một hiệu. + Dạng 4. Bài toán dẫn đến phép cộng phép trừ phân số. + Dạng 5. Thực hiện một dãy tính cộng và tính trừ phân số. BÀI 10 . PHÉP NHÂN PHÂN SỐ. + Dạng 1. Thực hiện phép nhân phân số. + Dạng 2. Viết một phân số dưới dạng tích của hai phân số thỏa mãn điều kiện cho trước. + Dạng 3. Tìm số chưa biết trong một đẳng thức có chứa phép nhân phân số. + Dạng 4. So sánh giá trị hai biểu thức. [ads] BÀI 11 . TÍNH CHẤT CƠ BẢN CỦA PHÉP NHÂN PHÂN SỐ. + Dạng 1. Thực hiện phép nhân phân số. + Dạng 2. Tính giá trị biểu thức. + Dạng 3. Bài toán dẫn đến phép nhân phân số. BÀI 12 . PHÉP CHIA PHÂN SỐ. + Dạng 1. Tìm số nghịch đảo của một số cho trước. + Dạng 2. Thực hiện phép chia phân số. + Dạng 3. Viết một phân số dưới dạng thương của hai phân số thỏa mãn điện kiện cho trước. + Dạng 4. Tìm số chưa biết trong một tích, một thương. + Dạng 5. Bài toán dẫn đến phép chia phân số. + Dạng 6. Tính giá trị của biểu thức. BÀI 13 . HỖN SỐ. SỐ THẬP PHÂN. PHẦN TRĂM. + Dạng 1. Viết phân số dưới dạng hỗn số và ngược lại. + Dạng 2. Viết các số đã cho dưới dạng phân số thập phân. Số thập phân, phần trăm và ngược lại. + Dạng 3. Cộng, trừ hỗn số. + Dạng 4 . Nhân, chia hỗn số. + Dạng 5. Tính giá trị của biểu thức số. + Dạng 6. Các phép tính về số thập phân. BÀI 14 . TÌM GIÁ TRỊ PHÂN SỐ CỦA MỘT SỐ CHO TRƯỚC. + Dạng 1. Tìm giá trị phân số của một số cho trước. + Dạng 2. Bài toán dẫn đến tìm giá trị phân số của một só cho trước. BÀI 15 . TÌM MỘT SỐ BIẾT GIÁ TRỊ MỘT PHÂN SỐ CỦA NÓ. + Dạng 1. Tìm một số biết giá trị một phân số của nó. + Dạng 2. Bài toán dẫn đến tìm một số biết giá trị một phân số của nó. + Dạng 3. Tìm số chưa biết trong một tổng, một hiệu. BÀI 16 . TÌM TỈ SỐ CỦA HAI SỐ. + Dạng 1. Các bài tập có liên quan đến tỉ số của hai số. + Dạng 2. Các bài tập liên quan đến tỉ số phần trăm. + Dạng 3. Các bài tập có liên quan đến tỉ lệ xích. BÀI 17 . BIỂU ĐỒ PHẦN TRĂM. + Dạng 1. Dựng biểu đồ phần trăm theo các số liệu cho trước. + Dạng 2. Đọc biểu đồ cho trước. + Dạng 3. Tính tỉ số phần trăm của các số cho trước.

Nguồn: toanmath.com

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề tập hợp các số nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề tập hợp các số nguyên, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT 1. Số nguyên âm, số nguyên dương, tập hợp các số nguyên. – Các số tự nhiên (khác 0): 1, 2, 3, 4, 5 … được gọi là các số nguyên dương. – Các số -1, -2, -3 …. gọi là các số nguyên âm. – Tập hợp các số nguyên gồm các số nguyên âm, số 0 và các số nguyên dương. Kí hiệu là tập Z. Chú ý: – Số 0 không là số nguyên âm cũng không là số nguyên dương. – Đôi khi ta còn viết dấu “+” ngay trước số nguyên dương. Ví dụ số 6 còn được viết +6 (đọc là dương sáu). 2. Thứ tự trong tập số nguyên. a. Trục số. – Ta biểu diễn các số 1, 2, 3 …. và các số nguyên âm -1, -2, -3 … khi đó ta được một trục số gốc O (Hình 1). – Chiều từ trái sang phải là chiều dương, chiều ngược lại là chiều âm. – Điểm biểu diễn số nguyên a gọi là điểm a. – Cho hai số nguyên a, b. Trên trục số, nếu điểm a nằm trước điểm b thì a nhỏ hơn b, hay a b. Chú ý : Có thể có hình vẽ như Hình 2. b. Thứ tự các số nguyên. – Mọi số nguyên âm đều nhỏ hơn 0, do đó đều nhỏ hơn mọi số nguyên dương. – Nếu a và b là hai số nguyên dương và a b thì a b. Chú ý: Kí hiệu a b có nghĩa là “a b hoặc a b”. B. BÀI TẬP TRẮC NGHIỆM I. MỨC ĐỘ NHẬN BIẾT. II. MỨC ĐỘ THÔNG HIỂU. III. MỨC ĐỘ VẬN DỤNG. IV. MỨC ĐỘ VẬN DỤNG CAO.
Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề bội chung, bội chung nhỏ nhất
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề bội chung, bội chung nhỏ nhất, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT 1. Bội chung. * Bội chung của hai hay nhiều số là bội của tất cả các số đó. * Kí hiệu tập hợp các bội chung của a và b là BC a b. * Cách tìm bội chung của hai số a và b: Viết tập hợp các bội của a và bội của b B a B b. Tìm những phần tử chung của B a và B b. 2. Bội chung nhỏ nhất. * Bội chung nhỏ nhất của hai hay nhiều số là số nhỏ nhất khác 0 trong tập hợp các bội chung của các số đó. * Bội chung nhỏ nhất của a và b kí hiệu là BC a b. * Muốn tìm BCNN của hai hay nhiều số lớn hơn 1, ta thực hiện ba bước sau: Bước 1: Phân tích mỗi số ra thừa số nguyên tố. Bước 2: Chọn ra các thừa số nguyên tố chung và riêng. Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN phải tìm. * Muốn tìm bội chung của các số đã cho, ta có thể tìm các bội của BCNN của các số đó. * Chú ý: Nếu các số đã cho từng đôi một nguyên tố cùng nhau thì BCNN của chúng là tích của các số đó. Trong các số đã cho, nếu số lớn nhất là bội của các số còn lại thì BCNN của các số đã cho chính là số lớn nhất ấy. Tất cả các bội chung của a và b đều là bội của BC a b. Với mọi số tự nhiên a và b (khác 0), ta có: BCNN a a BCNN a b BCNN a b. 3. Các dạng toán thường gặp. Dạng 1. Tìm bội chung, bội chung nhỏ nhất của hai hay nhiều số. * Để nhận biết một số là bội chung của hai số, ta kiểm tra xem số này có chia hết cho hai số đó hay không? * Để viết tập hợp các bội chung của hai hay nhiều số, ta viết tập hợp các bội của mỗi số rồi tìm giao của các tập hợp đó. * Thực hiện quy tắc “ba bước” để tìm BCNN của hai hay nhiều số đó là: Bước 1 : Phân tích mỗi số ra thừa số nguyên tố. Bước 2 : Chọn ra các thừa số nguyên tố chung và riêng. Bước 3 : Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN phải tìm. * Có thể nhẩm BCNN của hai hay nhiều số bằng cách nhân số lớn nhất lần lượt với 1 2 3 … cho đến khi được kết quả là một số chia hết cho các số còn lại. Dạng 2. Bài toán đưa về việc tìm BCNN của hai hay nhiều số. Phân tích đề bài, suy luận để đưa về việc tìm BCNN của hai hay nhiều số. Dạng 3. Bài toán đưa về việc tìm bội chung của hai hay nhiều số thỏa mãn điều kiện cho trước. Phân tích đề bài, suy luận để đưa về việc tìm bội chung của hai hay nhiều số cho trước. Tìm BCNN của các số đó. Tìm các bội của BCNN này. Chọn trong số đó các bội thỏa mãn điều kiện đã cho. Dạng 4. Vận dụng BCNN để tìm mẫu chung của hai hay nhiều phân số. Để quy đồng mẫu hai phân số ta phải tìm mẫu chung của hai phân số đó. Thông thường ta nên chọn mẫu chung là BCNN của hai mẫu. B. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề số nguyên tố
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề số nguyên tố, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT 1. Số nguyên tố và hợp số. + Số nguyên tố là số tự nhiên lớn hơn 1 chỉ có hai ước là một và chính nó. + Hợp số là số tự nhiên lớn hơn 1 có nhiều hơn hai ước. 2. Phân tích một số ra thừa số nguyên tố. a) Phân tích một số tự nhiên lớn hơn 1 ra thừa số nguyên tố là viết số đó dưới dạng một tích các thừa số nguyên tố. b) Cách phân tích một số ra thừa số nguyên tố: Phân tích theo cột dọc hoặc dùng sơ đồ cây. 3. Các dạng toán thường gặp. Dạng 1: Nhận biết số nguyên tố. Phương pháp: + Căn cứ vào định nghĩa số nguyên tố. + Căn cứ vào các dấu hiệu chia hết. Dạng 2: Nhận biết hợp số. Phương pháp: + Căn cứ vào định nghĩa hợp số. + Căn cứ vào các dấu hiệu chia hết. Dạng 3: Phân tích một số ra thừa số nguyên tố. Phương pháp: + Căn cứ vào định nghĩa phân tích một số ra thừa số nguyên tố. + Căn cứ vào các dấu hiệu chia hết để phân tích một số ra thừa số nguyên tố. + Vận dụng phân tích một số ra thừa số nguyên tố để giải các bài toán có liên quan đến ước số. B. BÀI TẬP TRẮC NGHIỆM Dạng 1: Nhận biết số nguyên tố. Dạng 2: Nhận biết hợp số. Dạng 3: Phân tích một số ra thừa số nguyên tố.
Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề dấu hiệu chia hết
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề dấu hiệu chia hết, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6 phần Số học. A. TÓM TẮT LÝ THUYẾT 1. Dấu hiệu chia hết cho 2 3 5 9. + Dấu hiệu chia hết cho 2: Các số có chữ số tận cùng chia hết cho 2 (hoặc các chữ số tận cùng là số chẵn). + Dấu hiệu chia hết cho 3: Tổng các chữ số chia hết cho 3. + Dấu hiệu chia hết cho 5: Có chữ số tận cùng là 0 hoặc 5. + Dấu hiệu chia hết cho 9: Tổng các chữ số chia hết cho 9. 2. Các dạng toán thường gặp. Dạng 1: Nhận biết dấu hiệu một số (một tổng hoặc một hiệu) chia hết cho 2 3 9 5. Phương pháp: Ta sử dụng: Dấu hiệu chia hết của các số. Dạng 2: Tìm điều kiện để một số (một tổng) chia hết cho 2 3 9 5. Phương pháp: Sử dụng các dấu hiệu chia hết cho 2 3 9 5. B. BÀI TẬP TRẮC NGHIỆM Dạng 1: Nhận biết dấu hiệu một số (một tổng hoặc một hiệu) chia hết cho 2 3 9 5. Dạng 2: Tìm điều kiện để một số (một tổng) chia hết cho 2, 3, 5, 9.