Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra giữa kỳ 2 Toán 9 năm 2021 - 2022 trường THCS Nguyễn Xuân Thưởng - TT Huế

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra định kỳ giữa học kỳ 2 môn Toán 9 năm học 2021 – 2022 trường THCS Nguyễn Xuân Thưởng, Thừa Thiên Huế. Trích dẫn đề kiểm tra giữa kỳ 2 Toán 9 năm 2021 – 2022 trường THCS Nguyễn Xuân Thưởng – TT Huế : + Cho (P): y = -x2. a. Vẽ (P). b. Tìm tọa độ điểm M trên (P) biết tung độ điểm M bằng -4. + Hai vòi nước cùng chảy vào một bể không có nước thì sau 1 giờ 20 phút bể đầy. Mỗi giờ lượng nước của vòi I chảy được gấp năm lần lượng nước của vòi II. Hỏi nếu mỗi vòi chảy riêng thì trong bao lâu đầy bể? + Cho tam giác ABC (AB < AC) có ba góc nhọn nội tiếp trong đường tròn tâm O, bán kính R. Gọi H là giao điểm của ba đường cao AD, BE, CF của tam giác ABC. a. Chứng minh rằng: AEHF và AEDB là tứ giác nội tiếp đường tròn. b. Vẽ đường kính AK của đường tròn (O). Chứng minh rằng: ABD và AKC đồng dạng với nhau. Suy ra: AB.AC = 2R.AD. c. Chứng minh: OC vuông góc DE.

Nguồn: toanmath.com

Đọc Sách

Đề thi giữa học kì 2 Toán 9 năm 2021 - 2022 trường Tạ Quang Bửu - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng giữa học kì 2 môn Toán 9 năm học 2021 – 2022 trường THCS và THPT Tạ Quang Bửu, quận Hai Bà Trưng, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Năm ngày 10 tháng 03 năm 2022. Trích dẫn đề thi giữa học kì 2 Toán 9 năm 2021 – 2022 trường Tạ Quang Bửu – Hà Nội : + Giải bài toán bằng cách lập hệ phương trình: Một cửa hàng có tổng cộng 28 chiếc tivi và tủ lạnh. Giá mỗi cái tủ lạnh là 15 triệu đồng, mỗi cái tivi là 30 triệu đồng. Nếu bán hết 28 cái tivi và tủ lạnh này chủ cửa hàng sẽ thu được 720 triệu đồng. Hỏi cửa hàng có bao nhiêu cái tivi và tủ lạnh? + Cho nửa đường tròn (O), đường kính AB. Lấy hai điểm C, M bất kỳ thuộc nửa đường tròn sao cho AC = CM (AC và CM khác MB). Gọi D là giao điểm của AC và BM; H là giao điểm của AM và BC. 1. Chứng minh: Tứ giác CHMD nội tiếp. 2. Chứng minh: DA.DC = DB.DM. 3. Tiếp tuyến tại A của đường tròn (O) cắt tia BC tại K. Chứng minh rằng: KD. Gọi Q là giao điểm của DH và AB. Chứng minh rằng: khi điểm C di chuyển trên nửa đường tròn sao cho AC = CM thì đường tròn ngoại tiếp CMQ luôn đi qua một điểm cố định. + Chọn đáp án đúng trong mỗi câu sau (học sinh ghi vào giấy thi phương án lựa chọn. Ví dụ: câu 1 chọn đáp án A, ghi là: 1A).