Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán có yếu tố max - min trong bài toán thể tích

Tài liệu gồm 33 trang, được biên soạn bởi thầy giáo Hoàng Xuân Bính (giáo viên tiếp sức chinh phục kỳ thi tốt nghiệp THPT 2021 môn Toán trên kênh truyền hình Giáo dục Quốc gia VTV7), hướng dẫn giải các dạng toán có yếu tố max – min trong bài toán thể tích khối đa diện (cực trị thể tích / GTLN – GTNN thể tích) – một dạng toán xuất hiện nhiều trong trong đề thi thử tốt nghiệp THPT môn Toán nhiều năm gần đây; đây cũng là dạng bài tập mà khiến nhiều học sinh gặp khó khăn về việc tiếp cận và tìm lời giải. 1. Lý thuyết a) Một số phương pháp chung để giải quyết các bài toán cực trị về thể tích: – Thông thường để giải quyết một bài toán cực trị về thể tích thì mục tiêu đầu tiên của chúng ta chính là thiết lập được các yếu tố cơ bản của công thức tính thể tích là tìm được chiều cao, diện tích đáy của khối chóp hoặc lăng trụ ấy. – Sau khi đã xác định được công thức của thể tích thì ta có thể sử dụng một trong ba phương pháp sau đây: + Phương pháp 1: Khảo sát hàm số một biến số. + Phương pháp 2: Sử dụng đánh giá bằng bất đẳng thức cổ điển: Cauchy, Cauchy Schwarz …. + Phương pháp 3: Có thể sử dụng đánh giá bằng hình học (ví dụ so sánh hình chiếu với hình xiên …). b) Một số kết quả thường được sử dụng trong các bài toán cực trị. c) Bất đẳng thức Cauchy. 2. Bài tập minh họa 2.1 Dạng 1: Các bài toán cực trị về tứ diện hoặc hình chóp tam giác. + Dạng 1: Tứ diện có 5 cạnh độ dài bằng nhau và 1 cạnh còn lại có dộ dài thay đổi hoặc tứ diện có 1 cặp cạnh chéo nhau có độ dài thay đổi và 4 cạnh còn lại có độ dài bằng nhau. + Dạng 2: Tứ diện có một cặp cạnh đối diện vuông góc với nhau hoặc có một cạnh bên chính là đoạn vuông góc chung của 1 cặp cạnh chéo nhau. + Dạng 3: Tứ diện có 1 đỉnh mà tại đỉnh đó độ dài 3 cạnh chung đỉnh không đổi và hai góc có số đo cố định, góc còn lại có số đo chưa xác định. + Dạng 4: Tứ diện được phân tích thành hai tứ diện nhỏ có chung mặt đáy và có 1 cạnh bên vuông góc với mặt đáy chung đó. + Dạng 5: Sử dụng tính chất đồng phẳng của 4 điểm. + Dạng 6: Tứ diện gần đều. 2.2 Các bài toán cực trị về hình chóp tứ giác. + Dạng 1: Hình chóp có các cạnh bên bằng nhau. + Dạng 2: Sử dụng tỉ số thể tích để xác định cực trị. + Dạng 3: Chóp có chiều cao không đổi. + Dạng 4: Các bài toán liên quan đến khoảng cách, góc. 2.3 Các bài toán cực trị về hình hộp. Trong dạng bài tập này thì cách thức để giải quyết bài toán vẫn tương tự như trong dạng bài toán cực trị về hình chóp. Từ giả thiết bài toán, ta xác định mối quan hệ của đường cao và diện tích đáy của hình hộp theo các đại lượng cho trước và thiết lập công thức tính thể tích về theo 1 đại lượng biến nào đó. Sau đó áp dụng bất đẳng thức Cauchy hoặc sử dụng phương pháp hàm số để xác định đáp số của bài toán. 2.4 Các bài toán thực tế. Với các bài toán thực tế liên quan đến cực trị thể tích của các khối đa diện thường dẫn đến yêu cầu xác định đúng được các điều kiện về chiều cao, diện tích đáy theo đại lượng biến cần tìm của bài toán. Sau đó dựa vào đánh giá bất đẳng thức Cauchy hoặc sử dụng phương pháp hàm số là sẽ giải quyết được bài toán. 3. Bài tập tự luyện Xem thêm : Bài toán về giá trị lớn nhất, giá trị nhỏ nhất liên quan đến mũ – logarit – Hoàng Xuân Bính (tài liệu cùng tác giả)

Nguồn: toanmath.com

Đọc Sách

Khối đa diện và thể tích của chúng - Huỳnh Đức Khánh
Tài liệu gồm 68 trang, được biên soạn bởi thầy giáo Huỳnh Đức Khánh (chủ biên), tổng hợp các kiến thức cần ghi nhớ, phân dạng và tuyển chọn các bài toán trắc nghiệm thuộc chủ đề khối đa diện và thể tích của chúng, có đáp án và lời giải chi tiết, giúp học sinh học tốt chương trình Hình học 12 chương 1 và ôn thi THPT Quốc gia môn Toán năm học 2020 – 2021. Bài 1 . KHÁI NIỆM VỀ KHỐI ĐA DIỆN. + Dạng 1. Nhận biết hình đa diện + Dạng 2. Số mặt của hình đa diện. + Dạng 3. Số cạnh của hình đa diện. + Dạng 4. Số đỉnh của hình đa diện. + Dạng 5. Tâm đối xứng của hình đa điện. + Dạng 6. Trục đối xứng của hình đa diện. + Dạng 7. Mặt đối xứng của hình đa diện. + Dạng 8. Phân chia – lắp ghép khối đa diện. Bài 2 . KHỐI ĐA DIỆN LỒI VÀ KHỐI ĐA DIỆN ĐỀU. [ads] Bài 3 . THỂ TÍCH KHỐI ĐA DIỆN. + Dạng 1. Thể tích khối chóp cơ bản. + Dạng 2. Thể tích khối chóp khi biết chân đường cao. + Dạng 3. Thể tích khối chóp có cạnh bên tạo với đáy một góc cho trước. + Dạng 4. Thể tích khối chóp có mặt bên tạo với đáy một góc cho trước. + Dạng 5. Thể tích khối chóp – mức độ vận dụng. + Dạng 6. Thể tích lăng trụ đứng. + Dạng 7. Thể tích lăng trụ xiên. + Dạng 8. Tỉ số thể tích. + Dạng 9. Bài toán cực trị. + Dạng 10. Một số bài toán ứng dụng.
Tài liệu bồi dưỡng học sinh giỏi hình học không gian
Tài liệu gồm 103 trang, được sưu tầm và tổng hợp bởi nhóm tác giả Tạp Chí Và Tư Liệu Toán Học, tuyển tập các chuyên đề bồi dưỡng học sinh giỏi hình học không gian. Chương 1 . Phương pháp Vector. I. Cơ sở của phương pháp vector. II. Các bài toán ứng dụng vector. + Bài toán 1. Chứng minh đẳng thức vec tơ. + Bài toán 2. Chứng minh ba vec tơ đồng phẳng và bốn điểm đồng phẳng. + Bài toán 3. Tính độ dài đoạn thẳng. + Bài toán 4. Sử dụng điều kiện đồng phẳng của bốn điểm để giải bài toán hình không gian. + Bài toán 5. Tính góc giữa hai đường thẳng. Chương 2 . Các khối tứ diện đặc biệt. Trong chương trình hình học không gian bậc THPT có lẽ khối đa diện được nhắc tới nhiều nhất và cũng đồng thời được khai thác rất nhiều trong các đề thi thử, HSG, THPT Quốc gia chính là khối tứ diện. Chắc hẳn nhiều bạn đã từng gặp qua các bài toán về tứ diện mà các giả thiết của nó trông rất lạ, hoặc một số bài toán tính thể tích mà trong đó giả thiết liên quan tới góc hoặc tới cạnh chẳng hạn, và chúng ta chưa có cách giải quyết chúng. Vì thế trong chương này tôi sẽ cùng bạn đọc tìm hiểu các bài toán liên quan tới tứ diện từ dễ đến khó để có thể giải quyết hoàn toàn vấn đề này. I. Khối tứ diện tổng quát. + Công thức tính đường trọng tuyến. + Một số công thức về diện tích. + Một số công thức về thể tích của tứ diện. [ads] II. Các khối tứ diện đặc biệt. + Khối tứ diện vuông. + Khối tứ diện gần đều. + Tính chất của tứ diện trực tâm. Chương 3 . Cực trị hình học không gian. Cực trị và bất đẳng thức nói chung luôn là các bài toán khó yêu cầu người làm bài phải có kỹ năng tốt về bất đẳng thức cũng như kiến thức vững về hàm số cũng như đạo hàm. Trong chương này chúng ta sẽ cùng đi tìm hiểu lớp bài toán cực trị hình không gian cũng như bất đẳng thức trong hình không gian. I. Các kiến thức cơ bản về bất đẳng thức. + Bất đẳng thức Cauchy – AM – GM. + Bất đẳng thức Cauchy – Schwarz. + Bất đẳng thức Minkowski. II. Phương pháp giải các bài toán cực trị. + Bước 1. Biểu diễn đối tượng đề bài yêu cầu qua một (hoặc hai) đại lượng chưa biết ta gọi là biến x. + Bước 2. Tìm điều kiện của biến x dựa vào giả thiết đã cho. + Bước 3. Khảo sát hàm số theo biến x để tìm ra kết quả của bài toán.
Chuyên đề khoảng cách từ điểm đến mặt phẳng - Trần Mạnh Tường
Tài liệu gồm 15 trang, được biên soạn bởi thầy giáo Trần Mạnh Tường (giáo viên tiếp sức chinh phục kỳ thi tốt nghiệp THPT năm 2020 môn Toán trên kênh truyền hình Giáo dục Quốc gia VTV7), hướng dẫn các phương pháp xác định và tính khoảng cách từ điểm đến mặt phẳng trong không gian, đây là dạng toán thường gặp trong chương trình Hình học lớp 11, Hình học lớp 12 và các đề thi tốt nghiệp THPT môn Toán. I. KIẾN THỨC CẦN NHỚ 1. Khoảng cách giữa điểm và mặt phẳng. Khoảng cách giữa một điểm và một mặt phẳng là khoảng cách từ điểm đó tới hình chiếu vuông góc của nó lên mặt phẳng đó. 2. Khoảng cách giữa một đường thẳng và một mặt phẳng song song. Khoảng cách giữa một đường thẳng và một mặt phẳng song song là khoảng cách từ một điểm bất kì trên đường thẳng này tới mặt phẳng kia. 3. Khoảng cách giữa hai mặt phẳng song song. Khoảng cách giữa hai mặt phẳng song song là khoảng cách từ một điểm bất kì trên mặt phẳng này tới mặt phẳng kia. [ads] 4. Các phương pháp thường dùng để tính khoảng cách từ điểm đến mặt phẳng. a. Dùng định nghĩa. b. Phương pháp đổi điểm (dùng tỉ số khoảng cách). Khi sử dụng phương pháp này, ta nên cố gắng đưa việc tính khoảng cách từ 1 điểm đến mặt phẳng về việc tính khoảng cách từ chân đường cao của hình chóp hoặc lăng trụ đến mặt phẳng. c. Phương pháp thể tích. d. Một công thức thường dùng trong bài toán tính khoảng cách. II. BÀI TẬP VẬN DỤNG Tuyển tập 15 câu hỏi và bài toán trắc nghiệm tính khoảng cách từ điểm đến mặt phẳng, mức độ vận dụng – vận dụng cao (VD – VDC), có đáp án và lời giải chi tiết.
Chuyên đề khoảng cách giữa hai đường thẳng chéo nhau - Trần Mạnh Tường
Tài liệu gồm 12 trang, được biên soạn bởi thầy giáo Trần Mạnh Tường (giáo viên tiếp sức chinh phục kỳ thi tốt nghiệp THPT năm 2020 môn Toán trên kênh truyền hình Giáo dục Quốc gia VTV7), hướng dẫn các phương pháp xác định và tính khoảng cách giữa hai đường thẳng chéo nhau trong không gian, đây là dạng toán thường gặp trong chương trình Hình học lớp 11, Hình học lớp 12 và các đề thi tốt nghiệp THPT môn Toán. I. KIẾN THỨC CẦN NHỚ 1. Định nghĩa Khoảng cách 2 đường thẳng chéo nhau là độ dài đoạn vuông góc chung của hai đường thẳng đó. 2. Các phương pháp tính khoảng cách giữa hai đường thẳng chéo nhau Có 3 phương pháp thường dùng: a. Phương pháp 1 Dùng định nghĩa: + Xác định đoạn vuông góc chung AB của hai đường thẳng chéo nhau. + Tính độ dài đoạn AB. [ads] b. Phương pháp 2 + Chọn hoặc dựng 1 mặt phẳng (P) chứa 1 đường và song song với đường thẳng còn lại (chẳng hạn chứa b và song song với a). + Khi đó d(a;b) = d(a;(P)) = d(M;(P)) với M là điểm tùy ý trên đường thẳng a. c. Phương pháp 3 + Chọn hoặc dựng 2 mặt phẳng lần lượt chứa 1 đường thẳng và song song với đường thẳng còn lại. + Khi đó d(a;b) = d((P);(Q)) = d(H;(P)) = d(K;(Q)) với H thuộc (Q) và K thuộc (P). d. Sử dụng phương pháp vectơ II. BÀI TẬP VẬN DỤNG Chọn lọc 10 câu hỏi và bài toán trắc nghiệm tính khoảng cách giữa hai đường thẳng chéo nhau, mức độ vận dụng – vận dụng cao (VD – VDC), có đáp án và lời giải chi tiết.