Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán có yếu tố max - min trong bài toán thể tích

Tài liệu gồm 33 trang, được biên soạn bởi thầy giáo Hoàng Xuân Bính (giáo viên tiếp sức chinh phục kỳ thi tốt nghiệp THPT 2021 môn Toán trên kênh truyền hình Giáo dục Quốc gia VTV7), hướng dẫn giải các dạng toán có yếu tố max – min trong bài toán thể tích khối đa diện (cực trị thể tích / GTLN – GTNN thể tích) – một dạng toán xuất hiện nhiều trong trong đề thi thử tốt nghiệp THPT môn Toán nhiều năm gần đây; đây cũng là dạng bài tập mà khiến nhiều học sinh gặp khó khăn về việc tiếp cận và tìm lời giải. 1. Lý thuyết a) Một số phương pháp chung để giải quyết các bài toán cực trị về thể tích: – Thông thường để giải quyết một bài toán cực trị về thể tích thì mục tiêu đầu tiên của chúng ta chính là thiết lập được các yếu tố cơ bản của công thức tính thể tích là tìm được chiều cao, diện tích đáy của khối chóp hoặc lăng trụ ấy. – Sau khi đã xác định được công thức của thể tích thì ta có thể sử dụng một trong ba phương pháp sau đây: + Phương pháp 1: Khảo sát hàm số một biến số. + Phương pháp 2: Sử dụng đánh giá bằng bất đẳng thức cổ điển: Cauchy, Cauchy Schwarz …. + Phương pháp 3: Có thể sử dụng đánh giá bằng hình học (ví dụ so sánh hình chiếu với hình xiên …). b) Một số kết quả thường được sử dụng trong các bài toán cực trị. c) Bất đẳng thức Cauchy. 2. Bài tập minh họa 2.1 Dạng 1: Các bài toán cực trị về tứ diện hoặc hình chóp tam giác. + Dạng 1: Tứ diện có 5 cạnh độ dài bằng nhau và 1 cạnh còn lại có dộ dài thay đổi hoặc tứ diện có 1 cặp cạnh chéo nhau có độ dài thay đổi và 4 cạnh còn lại có độ dài bằng nhau. + Dạng 2: Tứ diện có một cặp cạnh đối diện vuông góc với nhau hoặc có một cạnh bên chính là đoạn vuông góc chung của 1 cặp cạnh chéo nhau. + Dạng 3: Tứ diện có 1 đỉnh mà tại đỉnh đó độ dài 3 cạnh chung đỉnh không đổi và hai góc có số đo cố định, góc còn lại có số đo chưa xác định. + Dạng 4: Tứ diện được phân tích thành hai tứ diện nhỏ có chung mặt đáy và có 1 cạnh bên vuông góc với mặt đáy chung đó. + Dạng 5: Sử dụng tính chất đồng phẳng của 4 điểm. + Dạng 6: Tứ diện gần đều. 2.2 Các bài toán cực trị về hình chóp tứ giác. + Dạng 1: Hình chóp có các cạnh bên bằng nhau. + Dạng 2: Sử dụng tỉ số thể tích để xác định cực trị. + Dạng 3: Chóp có chiều cao không đổi. + Dạng 4: Các bài toán liên quan đến khoảng cách, góc. 2.3 Các bài toán cực trị về hình hộp. Trong dạng bài tập này thì cách thức để giải quyết bài toán vẫn tương tự như trong dạng bài toán cực trị về hình chóp. Từ giả thiết bài toán, ta xác định mối quan hệ của đường cao và diện tích đáy của hình hộp theo các đại lượng cho trước và thiết lập công thức tính thể tích về theo 1 đại lượng biến nào đó. Sau đó áp dụng bất đẳng thức Cauchy hoặc sử dụng phương pháp hàm số để xác định đáp số của bài toán. 2.4 Các bài toán thực tế. Với các bài toán thực tế liên quan đến cực trị thể tích của các khối đa diện thường dẫn đến yêu cầu xác định đúng được các điều kiện về chiều cao, diện tích đáy theo đại lượng biến cần tìm của bài toán. Sau đó dựa vào đánh giá bất đẳng thức Cauchy hoặc sử dụng phương pháp hàm số là sẽ giải quyết được bài toán. 3. Bài tập tự luyện Xem thêm : Bài toán về giá trị lớn nhất, giá trị nhỏ nhất liên quan đến mũ – logarit – Hoàng Xuân Bính (tài liệu cùng tác giả)

Nguồn: toanmath.com

Đọc Sách

Bài giảng khối đa diện lồi và khối đa diện đều
Tài liệu gồm 10 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề khối đa diện lồi và khối đa diện đều, giúp học sinh lớp 12 tham khảo khi học chương trình Hình học 12 chương 1: Khối đa diện. Mục tiêu : Kiến thức : + Biết khái niệm khối đa diện lồi, đa diện đều. + Nhận biết năm khối đa diện đều. + Biết tính đối xứng qua mặt phẳng của các loại khối đa điện đều. Kĩ năng : + Phân biệt được một hình vẽ có phải hình đa diện lồi hay không. + Biết số đỉnh, cạnh, mặt của năm khối đa diện đều. + Thành thạo đếm số mặt phẳng đối xứng, tâm đứng xối, trục đối xứng của các khối đa diện đều. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Nhận diện đa diện lồi, đa diện đều. Khối đa diện được gọi là khối đa diện lồi nếu đoạn thẳng nối hai điểm bất kì của khối đa diện thuộc khối đa diện. Dạng 2 : Các đặc điểm của khối đa diện đều. Chỉ có năm loại khối đa diện đều. Đó là loại {3;3}, {4;3}, {3;4}, {5;3} và {3;5}. Dựa vào bảng tóm tắt phần lý thuyết các thông số: Đỉnh cạnh mặt của các khối đa diện để giải toán. Dựa vào tính chất phép biến hình để tìm mặt phẳng đối xứng, tâm đối xứng, trục đối xứng … của các loại khối đa diện. Công thức Ơ-le: Trong một đa diện lồi nếu gọi Đ là số đỉnh, C là số cạnh, M là số mặt thì ta có công thức Đ – C + M = 2.
Chuyên đề thể tích khối đa diện dành cho học sinh trung bình - yếu - Dương Minh Hùng
Tài liệu gồm 67 trang, được biên soạn bởi thầy giáo Dương Minh Hùng, hướng dẫn giải các bài toán trắc nghiệm thuộc chuyên đề khối đa diện và thể tích của chúng, dành cho học sinh trung bình – yếu, ôn thi THPT Quốc gia môn Toán năm học 2020 – 2021. Bài 1 . KHÁI NIỆM KHỐI ĐA DIỆN. Dạng 1. Nhận diện đa diện lồi. Dạng 2. Xác định số đỉnh, cạnh, mặt bên của một khối đa diện. Dạng 3. Mặt phẳng đối xứng. Dạng 4. Phân chia lắp ghép khối đa diện. Bài 2 . KHỐI ĐA DIỆN LỒI VÀ ĐA DIỆN ĐỀU. Dạng 1. Nhận diện hình đa diện, khối đa diện lồi. Dạng 2. Nhận diện khối đa diện đều. Bài 3 . THỂ TÍCH KHỐI CHÓP CÓ CẠNH BÊN VUÔNG GÓC ĐÁY. Dạng 1. Chóp có đáy là tam giác. Dạng 2. Chóp có đáy là hình vuông, chữ nhật, thoi, thang. Bài 4 . THỂ TÍCH KHỐI CHÓP CÓ MẶT BÊN VUÔNG GÓC ĐÁY. Dạng 1. Chóp có đáy là tam giác. Dạng 2. Chóp có đáy là tứ giác. Bài 5 . THỂ TÍCH KHỐI CHÓP ĐỀU. Dạng 1. Chóp có đáy là tam giác đều. Dạng 2. Chóp có đáy là hình vuông. Bài 6 . THỂ TÍCH KHỐI LĂNG TRỤ ĐỨNG. Dạng 1. Lăng trụ đứng có đáy là tam giác. Dạng 2. Lăng trụ có đáy là tứ giác. Bài 7 . TỶ SỐ THỂ TÍCH. Dạng 1. Tỷ số cơ bản trong tam giác. Dạng 2. Tỷ số cơ bản của khối chóp tam giác. Xem thêm : Chuyên đề hàm số và đồ thị dành cho học sinh trung bình – yếu – Dương Minh Hùng
Bài toán góc và khoảng cách trong đề tham khảo THPTQG 2020 môn Toán
Tài liệu gồm 34 trang, phân tích và phát triển bài toán góc và khoảng cách trong đề tham khảo THPTQG 2020 môn Toán, cụ thể đó là câu 37 và câu 49. Câu 37 là bài toán tính khoảng cách giữa hai đường thẳng chéo nhau trong hình chóp có đường cao cho trước. Một bài ở mức độ vận dụng. Có hai ý tưởng nổi bật trong bài: + Thứ nhất: Là bài toán tính khoảng cách giữa hai đường thẳng chéo nhau và không vuông góc với nhau: Một đường nằm trong mặt phẳng đáy và một đường là cạnh bên. + Thứ hai: Đáy của hình chóp là một hình thang rất hay, rất đặc biệt: từ đó dẫn đến đường chéo vuông góc với cạnh bên, là rút ngắn cách tính khoảng cách. [ads] Câu 49 có hai nội dung trọng tâm: Thể tích và Góc giữa hai mặt phẳng. + Phân tích về bài toán thể tích: Một bài toán thể tích kiểm tra được hai kỹ năng: Thứ nhất là xác định và tính đường cao; Thứ hai là tính diện tích đáy. + Bài toán góc giữa hai mặt phẳng luôn là bài toán khó nhất trong các bài toán hình học không gian. Câu 49 đưa ra hai vấn đề khó thường gặp và kiểm tra kiến thức cơ bản về góc: Khó thứ nhất là cái khó chung của bài toán hình học không gian, là hình trong bài không có đường cao cho trước. Khó thứ hai là cái khó riêng của bài toán góc giữa hai mặt phẳng. Ở đây câu 49 này còn kết hợp hết cái khó của bài toán góc: Cho góc giữa hai mặt bên vào giả thiết. Muốn giải quyết được bài toán này phải khai thác được giả thiết góc.
Khối đa diện, nón - trụ - cầu trong các đề thi thử THPTQG môn Toán
Tài liệu gồm 514 trang được sưu tầm và biên soạn bởi thầy giáo Th.S Nguyễn Chín Em, tuyển tập các câu hỏi và bài tập trắc nghiệm các chuyên đề: khối đa diện và thể tích khối đa diện, mặt nón – mặt trụ – mặt cầu có đáp án và lời giải chi tiết trong các đề thi thử THPT Quốc gia môn Toán những năm gần đây; giúp các em học sinh khối 12 học tốt chương trình Hình học 12 chương 1 (khối đa diện và thể tích của chúng), Hình học 12 chương 2 (mặt nón – mặt trụ – mặt cầu) và ôn thi THPT Quốc gia môn Toán. Nội dung tài liệu được chia thành 4 phần dựa theo độ khó của các câu hỏi và bài toán: + Phần 1. Mức độ nhận biết (Trang 3). + Phần 2. Mức độ thông hiểu (Trang 95). + Phần 3. Mức độ vận dụng thấp (Trang 284). + Phần 4. Mức độ vận dụng cao (Trang 442). Trích dẫn tài liệu khối đa diện, nón – trụ – cầu trong các đề thi thử THPTQG môn Toán: + Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì ta có thể chia hình lập phương thành? A. 4 tứ diện đều và 1 hình chóp tam giác đều. B. 5 tứ diện đều. C. 1 tứ diện đều và 4 hình chóp tam giác đều. D. 5 hình chóp tam giác đều, không có tứ diện đều. + Cho khối lập phương ABCD.A0B0C0D0. Mặt phẳng (ACC0) chia khối lập phương trên thành những khối đa diện nào? A. Hai khối lăng trụ tam giác ABC.A0B0C0 và ACD.A0C0D0. B. Hai khối chóp tam giác C0ABC và C0.ACD. C. Hai khối chóp tứ giác C0.ABCD và C0.ABB0A0. D. Hai khối lăng trụ tứ giác ABC.A0B0C0 và ACD.A0C0D0. [ads] + Cho hình chóp S.ABCD có đáy là hình thang cân với đáy AB = 2a, AD = BC = CD = a, mặt bên SAB là tam giác cân đỉnh S và nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD). Biết khoảng cách từ A đến mặt phẳng (SBC) bằng 2a√15/5, tính theo a thể tích V của khối chóp S.ABCD. + Trong không gian cho đoạn thẳng AB cố định và có độ dài bằng 4. Qua các điểm A và B lần lượt kẻ các tia Ax và By chéo nhau và hợp nhau góc 30◦, đồng thời cùng vuông góc với đoạn thẳng AB. Trên các tia Ax và By lần lượt lấy các điểm M, N sao cho MN = 5. Đặt AM = a, BN = b. Biết thể tích khối tứ diện ABMN bằng √3/3. Tính giá trị biểu thức S = (a2 + b2)2. + Cho tứ diện ABCD có thể tích V. Gọi A1B1C1D1 là tứ diện với các đỉnh lần lượt là trọng tâm tam giác BCD, CDA, DAB, ABC và có thể tích V1. Gọi A2B2C2D2 là tứ diện với các đỉnh lần lượt là trọng tâm tam giác B1C1D1, C1D1A1, D1A1B1, A1B1C1 và có thể tích V2, . . . cứ như vậy cho tứ diện AnBnCnDn có thể tích Vn với n là số tự nhiên lớn hơn 1. Tính giá trị của biểu thức P = lim n→+∞ (V + V1 + · · · + Vn).