Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 10 năm 2021 - 2022 cụm THPT huyện Lục Nam - Bắc Giang

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học sinh giỏi cấp cơ sở môn Toán lớp 10 năm học 2021 – 2022 cụm THPT huyện Lục Nam, tỉnh Bắc Giang; đề thi gồm 40 câu trắc nghiệm (14 điểm) và 03 câu tự luận (06 điểm), thời gian học sinh làm bài thi là 120 phút (không kể thời gian giao đề). Trích dẫn đề thi HSG Toán 10 năm 2021 – 2022 cụm THPT huyện Lục Nam – Bắc Giang : + Một cửa hàng bán đồ nam ở TT Bích Động gồm áo sơ mi, quần âu và áo phông. Ngày thứ nhất bán được 22 áo sơ mi, 12 quần âu và 18 áo phông, doanh thu là 12580000 đồng. Ngày thứ hai bán được 16 áo sơ mi, 10 quần âu và 20 áo phông, doanh thu là 10800000 đồng. Ngày thứ ba bán được 24 áo sơ mi, 15 quần âu và 12 áo phông, doanh thu là 12960000 đồng. Hỏi giá bán mỗi áo sơ mi, mỗi quần âu và mỗi áo phông là bao nhiêu? Biết giá từng loại trong ba ngày không thay đổi. A. 250000 đồng/áo sơ mi, 320000 đồng/quần âu, 180000 đồng/áo phông. B. 260000 đồng/áo sơ mi, 300000 đồng/quần âu, 190000 đồng/áo phông. C. 250000 đồng/áo sơ mi, 330000 đồng/quần âu, 170000 đồng/áo phông. D. 200000 đồng/áo sơ mi, 300000 đồng/quần âu, 190000 đồng/áo phông. + Quảng cáo sản phẩm trên truyền hình là một hoạt động quan trọng trong kinh doanh của các doanh nghiệp. Theo Thông báo số 10 / 2019 , giá quảng cáo trên VTV1 là 30 triệu đồng cho 15 giây/1 lần quảng cáo vào khoảng 20 h30 ; là 6 triệu đồng cho 15 giây/l lần quảng cáo vào khung giờ 16h00 -17h00. Một công ty dự định chi không quá 900 triệu đồng để quảng cáo trên VTV1 với yêu cầu quảng cáo về số lần phát như sau: ít nhất 10 lần quảng cáo vào khoảng 20 h30 và không quá 50 lần quảng cáo vào khung giờ 16 h00 17 h00  . Tổng số lần xuất hiện quảng cáo của công ty trên VTV1 nhiều nhất là bao nhiêu? + Cho tam giác ABC là tam giác đều có độ dài cạnh bằng 1. Trên các cạnh BC CA AB lần lượt lấy các điểm N M P sao cho 1 3 BN 2 3 CM AP x với 0 1 x. Biết rằng có hai giá trị của x để đường thẳng AN tạo với đường thẳng PM một góc 60, tính tổng của hai giá trị đó. + Cho tam giác ABC vuông tại A. Gọi là góc giữa hai đường trung tuyến BD và CK. Tìm giá trị nhỏ nhất của cos. + Cho tam giác ABC thỏa mãn AB AC 24 và sin sin sin cos cos B C A B C. Gọi M là trung điểm của cạnh BC và G là trọng tâm của tam giác ABC. Tìm diện tích tam giác MBG.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi lớp 10 môn Toán cấp tỉnh năm 2016 2017 sở GD ĐT Lai Châu
Nội dung Đề thi học sinh giỏi lớp 10 môn Toán cấp tỉnh năm 2016 2017 sở GD ĐT Lai Châu Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 10 cấp tỉnh năm 2016-2017 Sở GD&ĐT Lai Châu Đề thi học sinh giỏi Toán lớp 10 cấp tỉnh năm 2016-2017 Sở GD&ĐT Lai Châu Sytu xin gửi đến quý thầy cô và các em học sinh đề thi chọn học sinh giỏi môn Toán lớp 10 cấp tỉnh năm học 2016 – 2017 của Sở Giáo dục và Đào tạo UBND tỉnh Lai Châu. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích đề thi học sinh giỏi Toán lớp 10 cấp tỉnh năm 2016 – 2017 của Sở GD&ĐT Lai Châu: Với giá trị nào của m thì đồ thị của hàm số y = mx^3 - 6x cắt trục hoành tại 2 điểm phân biệt có hoành độ 1 và 2 thỏa mãn điều kiện x^2 + 1 = x. Trong mặt phẳng, cho tam giác ABC có đỉnh A(1,3), đường phân giác trong góc A có phương trình xy = 20, tâm đường tròn ngoại tiếp tam giác ABC là I(3,6). Viết phương trình đường thẳng BC, biết diện tích tam giác ABC gấp 4 lần diện tích tam giác IBC. Cho tam giác ABC nhọn, không cân, nội tiếp đường tròn (O) có đường cao AH ⊥ BC và tâm đường tròn nội tiếp là I. Gọi M là điểm chính giữa cung nhỏ BC của (O) và D là điểm đối xứng với A qua O. Đường thẳng MD cắt các đường thẳng BC, AH tại P và Q. Chứng minh rằng tam giác IPQ vuông. Đề thi trên đây sẽ giúp các em học sinh rèn luyện kỹ năng giải các bài toán logic, trắc nghiệm, và tư duy toán học một cách hiệu quả. Hy vọng rằng đề thi sẽ là công cụ hữu ích giúp các em chuẩn bị tốt cho kỳ thi học sinh giỏi sắp tới.
Đề thi chọn học sinh giỏi tỉnh lớp 10 môn Toán năm 2015 2016 sở GD ĐT Hà Tĩnh
Nội dung Đề thi chọn học sinh giỏi tỉnh lớp 10 môn Toán năm 2015 2016 sở GD ĐT Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi chọn học sinh giỏi tỉnh Toán lớp 10 năm 2015-2016 Đề thi chọn học sinh giỏi tỉnh Toán lớp 10 năm 2015-2016 Sytu xin giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi tỉnh Toán lớp 10 năm 2015-2016 của sở GD&ĐT Hà Tĩnh. Đề thi này bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích đề thi: + Trong mặt phẳng với hệ trục tọa độ Oxy, cho tam giác nhọn ABC có đường cao AH (H ∈ BC) và D, E lần lượt là trung điểm của AB, AC. Gọi F là điểm đối xứng với B qua E. Giả sử F(−3; 3) và đường trung trực của CH có phương trình x − 1 = 0. Tìm tọa độ giao điểm M của các đường thẳng HD, FA. Tìm tọa độ giao điểm N của tia CD với đường tròn ngoại tiếp tam giác ABC (N 6= C), biết đường thẳng đi qua N và tâm đường tròn ngoại tiếp tam giác HCF có phương trình x − 2y − 1 = 0. + Một vùng đất hình chữ nhật ABCD có AB = 25 km, BC = 20 km và M, N lần lượt là trung điểm của AD, BC. Một người cưỡi ngựa xuất phát từ A đi đến C bằng cách đi thẳng từ A đến một điểm X thuộc đoạn MN rồi lại đi thẳng từ X đến C. Vận tốc của ngựa khi đi trên phần ABNM là 15 km/h, vận tốc của ngựa khi đi trên phần MNCD là 30 km/h. Tìm vị trí của X để thời gian ngựa di chuyển từ A đến C là ít nhất. + Tìm giá trị lớn nhất của số nguyên dương n sao cho tồn tại n tam thức bậc hai khác nhau từng đôi một thỏa mãn đồng thời các điều kiện sau: i) mỗi tam thức bậc hai có hệ số của x^2 bằng 1; ii) tổng của 2 tam thức bậc hai bất kỳ có đúng 1 nghiệm (hai tam thức bậc hai là khác nhau nếu có ít nhất một hệ số tương ứng khác nhau).
Đề thi học sinh giỏi cấp tỉnh lớp 10 môn Toán năm 2014 2015 sở GD ĐT Hà Tĩnh
Nội dung Đề thi học sinh giỏi cấp tỉnh lớp 10 môn Toán năm 2014 2015 sở GD ĐT Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 10 cấp tỉnh Hà Tĩnh 2014-2015 Đề thi học sinh giỏi Toán lớp 10 cấp tỉnh Hà Tĩnh 2014-2015 Sytu xin giới thiệu đến quý thầy cô và các em học sinh đề thi học sinh giỏi Toán cấp tỉnh lớp 10 năm 2014-2015 của Sở Giáo dục và Đào tạo tỉnh Hà Tĩnh. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Dưới đây là một số câu hỏi trong đề thi: Trong mặt phẳng Oxy, cho tam giác ABC. Gọi H, K lần lượt là chân đường cao từ các đỉnh B, C của tam giác ABC. Tìm tọa độ các đỉnh của tam giác ABC biết H(1, 3), K(5, 1) và phương trình đường thẳng BC là x - 3 = 4(y) và điểm B có hoành độ âm. a) Cho tam giác ABC có trọng tâm G. Chứng minh rằng nếu AC là tiếp tuyến của đường tròn ngoại tiếp tam giác GAB thì cos^2A + cos^2C = 2cosB. b) Cho các số thực dương a, b, c thỏa mãn ab + bc + ca = 8. Tìm giá trị nhỏ nhất của biểu thức P = (3/a) + (11/b) + (11/c). Kí hiệu E là tập hợp gồm tất cả các tam thức bậc hai f(x) = ax^2 + bx + c có a ≠ 0 và b^2 - 4ac ≠ 0. Tìm điều kiện cần và đủ đối với các số m, n, p để với mọi f(x) thuộc E ta đều có g(x) = f(x) + mx + n và cx^2 + px + a cũng thuộc E. Đây chỉ là một phần nhỏ trong đề thi học sinh giỏi Toán cấp tỉnh lớp 10 năm 2014-2015 của sở GD&ĐT Hà Tĩnh, hy vọng các em học sinh sẽ rèn luyện và thử sức để đạt được kết quả tốt trong kiểm tra này.
Đề thi học sinh giỏi lớp 10 môn Toán năm 2012 2013 trường THPT Thuận An TT Huế
Nội dung Đề thi học sinh giỏi lớp 10 môn Toán năm 2012 2013 trường THPT Thuận An TT Huế Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 10 năm 2012 – 2013 trường THPT Thuận An TT Huế Đề thi học sinh giỏi Toán lớp 10 năm 2012 – 2013 trường THPT Thuận An TT Huế Sytu xin gửi đến quý thầy cô và các em học sinh lớp 10 đề thi học sinh giỏi môn Toán năm học 2012 – 2013 của trường THPT Thuận An, tỉnh Thừa Thiên Huế. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm cho các bài toán. Trích dẫn một số câu hỏi từ đề thi: Cho phương trình \(2mx^2 + mx + m - 2 = 0\), trong đó \(m\) là tham số. Tìm giá trị của \(m\) để phương trình đã cho có một nghiệm. Tìm giá trị của \(m\) để phương trình đã cho có hai nghiệm, với một nghiệm gấp đôi nghiệm còn lại. Cho tam giác \(ABC\). Trên các cạnh \(AB\), \(BC\), \(CA\) lần lượt lấy điểm \(M\), \(N\), \(P\) sao cho \(\dfrac{AM}{AB} = \dfrac{BC}{2}\), \(\dfrac{BN}{BC} = \dfrac{AC}{3}\) và \(\dfrac{CP}{CA} = 2\). Chứng minh rằng hai tam giác \(ABC\) và \(MNP\) có cùng trọng tâm. Gọi \(a\), \(b\), \(c\) là độ dài ba cạnh của tam giác \(abc\), \(h_a\), \(h_b\), \(h_c\) lần lượt là độ dài ba đường cao tương ứng với ba cạnh đó, \(r\) là bán kính đường tròn nội tiếp tam giác đó. Hãy tính công thức liên quan giữa các đại lượng này. Đề thi này rất thú vị và mang tính thách thức cao đối với các em học sinh lớp 10. Hy vọng rằng đề thi và lời giải chi tiết sẽ giúp các em rèn luyện kỹ năng giải toán một cách hiệu quả.