Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu Toán 9 chủ đề rút gọn biểu thức chứa căn thức bậc hai

Tài liệu gồm 22 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề rút gọn biểu thức chứa căn thức bậc hai trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. KIẾN THỨC CẦN NHỚ. Bước 1: Tìm điều kiện xác định của biểu thức. Bước 2: Phân tích tử số và mẫu số thành nhân tử rồi rút gọn nếu có thể. Bước 3: Quy đồng. Bước 4: Phá ngoặc bằng cách nhân khai trển các hạng tử với nhau hoặc khi triển hằng đẳng thức. Bước 5: Thu gọn bằng cách cộng, trừ các hạng tử đồng dạng. Bước 6: Phân tích tử thành nhân tử. Bước 7: Rút gọn lần cuối. CÁC DẠNG TOÁN. Dạng 1 : Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biểu thức khi biết giá trị của biến. Cách giải: Thực hiện theo hai bước: Bước 1: Để rút gọn biểu thức chứa căn bậc hai đã cho, ta sử dụng các phép biến đổi như đưa thừa số ra ngoài hoặc vào trong dấu căn, trục căn thức ở mẫu, quy đồng mẫu thức … một cách linh hoạt. Bước 2: Để tìm giá trị của biểu thức khi biết giá trị của biến ta rút gọn giá trị của biến (nếu cần) sau đó thay vào biểu thức đã được rút gọn ở trên và tính kết quả. Dạng 2 : Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biến khi biết giá trị của biểu thức. Cách giải: Để tìm giá trị của biến khi biết giá trị của biẻu thức tá ử dụng kết quả biểu thức rút gọn và giá trị đã biết của biểu thức trong đề bài để tìm ra kết quả. Dạng 3 : Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biến để biểu thức nhận giá trị nguyên. Cách giải: Ta xét hai trường hợp sau: Trường hợp 1: Tìm giá trị nguyên của biến để biểu thức nhậ giá trị nguyên. Trường hợp 2: Tìm giá trị thực của biến để biểu thức nhận giá trị nguyên. Dạng 4 : Rút gọn biểu thức chứa căn bậc hai và so sánh biểu thức với một số (hoặc một biểu thức khác). Cách giải: Để so sánh một biểu thức M với một số a, ta xét hiệu M – a và xét dấu của hiệu này, từ đó đi đến kết quả của phép so sánh. Dạng 5 : Rút gọn biểu thức chứa căn bậc hai và tìm GTNN (hoặc GTLN) của biểu thức. Cách giải: Chú ý rằng: – Biểu thức P có giá trị lớn nhất là a, ký hiệu P max a nếu P a với mọi giá trị của biến và tồn tại ít nhất một giá trị của biến để dấu “=” xảy ra. – Biểu thức P có giá trị nhỏ nhất là b, ký hiệu, P b min nếu P b với mọi giá trị của biến và tồn tại ít nhất một giá trị của biến để dấu “=” xảy ra. BÀI TẬP TỔNG HỢP. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP TỰ LUYỆN.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề đường thẳng song song và đường thẳng cắt nhau
Nội dung Chuyên đề đường thẳng song song và đường thẳng cắt nhau Bản PDF - Nội dung bài viết Tài liệu chuyên đề đường thẳng song song và đường thẳng cắt nhau Tài liệu chuyên đề đường thẳng song song và đường thẳng cắt nhau Tài liệu này được biên soạn bởi tác giả Toán Học Sơ Đồ, gồm 25 trang nhằm tổng hợp kiến thức trọng tâm về chuyên đề đường thẳng song song và đường thẳng cắt nhau. Được thiết kế để hỗ trợ học sinh trong quá trình học tập chương trình Đại số lớp 9 chương 2 bài số 4. Phần kiến thức cần nhớ: 1. Hệ số góc của đường thẳng y = ax + b (a khác 0). 2. Đường thẳng song song và đường thẳng cắt nhau. Các dạng minh họa: Dạng 1: - Xác định vị trí tương đối của hai đường thẳng d và d'. - Phương pháp giải: So sánh hệ số góc và hằng số của hai đường thẳng. Dạng 2: - Xác định phương trình đường thẳng từ điều kiện đã cho. Trắc nghiệm rèn luyện phản xạ: - Cung cấp các câu hỏi trắc nghiệm để học sinh rèn luyện và kiểm tra kiến thức về chuyên đề đường thẳng. Phiếu bài tập tự luyện: - Cung cấp các bài tập tự luyện để học sinh tự rèn luyện và kiểm tra kiến thức sau khi học bài. Tài liệu này sẽ giúp học sinh nắm vững kiến thức về đường thẳng song song và đường thẳng cắt nhau, từ đó nâng cao hiệu suất học tập và đạt kết quả cao trong môn Toán.
Chuyên đề hệ số góc của đường thẳng y = ax + b (a khác 0)
Nội dung Chuyên đề hệ số góc của đường thẳng y = ax + b (a khác 0) Bản PDF - Nội dung bài viết Chuyên đề hệ số góc của đường thẳng y = ax + b Chuyên đề hệ số góc của đường thẳng y = ax + b Tài liệu này bao gồm 16 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, nhằm tổng hợp kiến thức quan trọng về hệ số góc của đường thẳng y = ax + b (a khác 0). Tài liệu cung cấp các phần lí thuyết cơ bản, các dạng bài tập tự luận và trắc nghiệm được hướng dẫn cụ thể để hỗ trợ học sinh trong quá trình học chương trình Đại số lớp 9 chương 2 bài số 5. A. TÓM TẮT LÍ THUYẾT Tài liệu cung cấp lí thuyết về cách tìm hệ số góc của đường thẳng, xác định góc tạo bởi đường thẳng và trục Ox, và cách xác định đường thẳng khi biết hệ số góc. B. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1: Tìm hệ số góc của đường thẳng bằng cách sử dụng kiến thức về vị trí tương đối của hai đường thẳng và hệ số góc. Dạng 2: Xác định góc tạo bởi đường thẳng và trục Ox bằng cách sử dụng các phương pháp như vẽ đường thẳng trên mặt phẳng tọa độ và sử dụng tỉ lệ lượng giác của tam giác vuông. Dạng 3: Xác định phương trình của đường thẳng khi biết hệ số góc, dựa vào kiến thức về góc và hệ số góc của đường thẳng. C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ Bên cạnh các bài tập, tài liệu còn cung cấp phần trắc nghiệm để học sinh rèn luyện và tự kiểm tra nắng lực về chuyên đề này.
Chuyên đề phương trình bậc nhất hai ẩn
Nội dung Chuyên đề phương trình bậc nhất hai ẩn Bản PDF Đầu tiên, "Chuyên đề phương trình bậc nhất hai ẩn" là một tài liệu học tập quan trọng với 19 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ. Tài liệu này tổng hợp kiến thức quan trọng và cung cấp hướng dẫn chi tiết về cách giải các dạng bài tập tự luận và trắc nghiệm trong chuyên đề phương trình bậc nhất hai ẩn.Trước hết, tài liệu bao gồm các kiến thức cơ bản như phương trình bậc nhất hai ẩn và tập nghiệm của chúng. Sau đó, tài liệu tập trung vào các dạng bài tập minh họa, bao gồm các dạng như xác định nghiệm của phương trình bậc nhất hai ẩn, biện luận và vẽ đồ thị của hàm số bậc nhất, cũng như tìm nghiệm nguyên của phương trình.Ngoài ra, tài liệu cũng cung cấp các bài tập trắc nghiệm rèn luyện và tự luyện để học sinh có thể ôn tập và kiểm tra kiến thức của mình. Tài liệu này hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9, đặc biệt trong chương 3 với bài số 1 về phương trình bậc nhất hai ẩn.Tóm lại, "Chuyên đề phương trình bậc nhất hai ẩn" là một tài liệu hữu ích, cung cấp kiến thức chi tiết và hướng dẫn cụ thể giúp học sinh nắm vững và áp dụng phương trình bậc nhất hai ẩn trong bài tập và bài kiểm tra.
Chuyên đề hàm số bậc nhất
Nội dung Chuyên đề hàm số bậc nhất Bản PDF - Nội dung bài viết Chuyên đề hàm số bậc nhất Chuyên đề hàm số bậc nhất Tài liệu này bao gồm 16 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ. Nó tổng hợp kiến thức quan trọng về hàm số bậc nhất và cung cấp hướng dẫn giải các dạng bài tập tự luận và trắc nghiệm trong chuyên đề này. Được thiết kế để hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9 chương 2 bài số 2. Tóm tắt lý thuyết 1. Hàm số bậc nhất: Được biểu diễn bởi công thức y = ax + b với a, b là các số đã biết và a khác 0. 2. Các tính chất của hàm số bậc nhất: Hàm số bậc nhất xác định trên toàn bộ tập số thực. Nó đồng biến khi a > 0 và nghịch biến khi a < 0. Các dạng bài minh họa Dạng 1: Tính giá trị của hàm số tại một điểm, giúp xác định toạ độ của điểm trên đồ thị một cách nhanh chóng. Dạng 2: Vẽ đồ thị hàm bậc nhất theo các bước đã học. Dạng 3: Nhận dạng hàm số bậc nhất dựa vào định nghĩa. Dạng 4: Xét tính đồng biến và nghịch biến của hàm số bậc nhất, thông qua giá trị của a. Dạng 5: Bài toán thực tế liên quan đến hàm số bậc nhất. Trắc nghiệm rèn luyện phản xạ và phiếu bài tự luyện Bao gồm các dạng bài như nhận biết khái niệm hàm số, tính giá trị của hàm số, tìm điều kiện xác định của hàm số và vẽ đồ thị hàm số. Đây là tài liệu hữu ích để học sinh nắm vững kiến thức về hàm số bậc nhất và cải thiện kỹ năng giải bài tập trong chương trình Đại số.