Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 11 năm 2023 - 2024 cụm huyện Yên Dũng - Bắc Giang

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi văn hóa môn Toán 11 năm học 2023 – 2024 cụm trường THPT huyện Yên Dũng, tỉnh Bắc Giang; đề thi có đáp án và hướng dẫn chấm điểm mã đề 107 108 109 110 111. Trích dẫn Đề thi HSG Toán 11 năm 2023 – 2024 cụm huyện Yên Dũng – Bắc Giang : + Một anh sinh viên T nhập học đại học vào tháng năm . Bắt đầu từ tháng năm 2023, cứ vào ngày mồng một hàng tháng anh vay ngân hàng triệu đồng với lãi suất cố định /tháng. Lãi tháng trước được cộng vào số nợ để tiếp tục tính lãi cho tháng tiếp theo (lãi kép). Vào ngày mồng một hàng tháng kể từ tháng năm 2025 về sau anh không vay ngân hàng nữa và anh còn trả được cho ngân hàng triệu đồng do việc làm thêm. Hỏi ngay sau khi kết thúc ngày anh ra trường anh còn nợ ngân hàng bao nhiêu tiền (làm tròn đến hàng nghìn đồng)? + Lớp 11A có 50 học sinh, trong đó có 30 học sinh thích học môn Toán, 28 học sinh thích học môn Văn và 6 học sinh không thích học cả Toán và Văn. Chọn ngẫu nhiên một học sinh từ lớp đó. Xác suất để học sinh được chọn chỉ thích học môn Toán mà không thích học môn Văn là? + Một rạp hát có 25 hàng ghế, mỗi hàng có 20 ghế. Trong một buổi biểu diễn ca nhạc, rạp hát đó đã bán được vừa hết số vé tương ứng với số ghế trong rạp hát. Tính số tiền thu được từ việc bán vé, biết rằng giá mỗi vé ở hàng ghế thứ nhất là 500000 đồng và giá vé của hàng ghế sau ít hơn giá vé ở hàng ghế liền trước 15000 đồng.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát đội tuyển lớp 11 môn Toán lần 2 năm 2021 2022 trường THPT Trần Phú Vĩnh Phúc
Nội dung Đề khảo sát đội tuyển lớp 11 môn Toán lần 2 năm 2021 2022 trường THPT Trần Phú Vĩnh Phúc Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề khảo sát đội tuyển học sinh giỏi môn Toán lớp 11 lần 2 năm học 2021 – 2022 trường THPT Trần Phú, tỉnh Vĩnh Phúc; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát đội tuyển Toán lớp 11 lần 2 năm 2021 – 2022 trường THPT Trần Phú – Vĩnh Phúc : + Cho hình hộp ABCD A B C D. Gọi G là trọng tâm BC D a. Xác định thiết diện của hình hộp ABCD A B C D khi cắt bởi mặt phẳng ABG. Thiết diện là hình gì? b. Hai điểm M N lần lượt thuộc hai đoạn thẳng AD A C sao cho MN song song với mặt phẳng BC D biết 1 4 AM AD. Tính tỉ số CN CA. + Trong mặt phẳng tọa độ Oxy cho hai điểm A 1 2 B 3 1 và đường thẳng 1 2 1 1 x y. Tìm tọa độ điểm C thuộc để tam giác ACB cân tại C. + Trong dãy số 0 1 13 23 23 23 CC C tồn tại 3 số hạng liên tiếp tạo thành cấp số cộng, tìm tổng ba số hạng đó. File WORD (dành cho quý thầy, cô):
Đề HSG lớp 11 môn Toán năm 2020 2021 cụm THPT huyện Yên Dũng Bắc Giang
Nội dung Đề HSG lớp 11 môn Toán năm 2020 2021 cụm THPT huyện Yên Dũng Bắc Giang Bản PDF Ngày 28 tháng 01 năm 2021, cụm THPT huyện Yên Dũng, tỉnh Bắc Giang tổ chức kỳ thi học sinh giỏi cấp cơ sở môn Toán lớp 11 năm học 2020 – 2021. Đề HSG Toán lớp 11 năm 2020 – 2021 cụm THPT huyện Yên Dũng – Bắc Giang (mã đề 111 và mã đề 112) được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 40 câu, chiếm 14 điểm, phần tự luận gồm 03 câu, chiếm 06 điểm, thời gian làm bài 120 phút. Trích dẫn đề HSG Toán lớp 11 năm 2020 – 2021 cụm THPT huyện Yên Dũng – Bắc Giang : + Cho một hình vuông, mỗi cạnh của hình vuông đó được chia thành n đoạn bằng nhau bởi n 1 điểm chia (không tính 2 đầu mút mỗi cạnh). Xét các tứ giác có 4 đỉnh là 4 điểm chia trên 4 cạnh của hình vuông đã cho. Gọi a là số tứ giác tạo thành và b là số các hình bình hành trong a tứ giác đó. Giá trị của n thỏa mãn a b 9 là? + Hội nghị thượng đỉnh Mỹ – Triều lần hai được tổ chức tại Hà Nội, sau khi kết thúc Hội nghị. Ban tổ chức mời 10 người lãnh đạo cấp cao của cả hai nước (Trong đó có Tổng thống Mỹ Donald Trump và Chủ tịch Triều Tiên Kim Jong-un) tham gia họp báo. Ban tổ chức sắp xếp 10 người ngồi vào 10 cái ghế thẳng hàng. Hỏi có bao nhiêu cách sắp xếp sao cho ông Donald Trump và Kim Jong-un ngồi cạnh nhau? + Cho chóp S.ABCD có đáy ABCD là hình bình hành. M là một điểm lấy trên cạnh SA (M không trùng với S và A). Mặt phẳng (α) qua ba điểm M, B, C cắt chóp S.ABCD theo thiết diện là: A. Tam giác B. Hình thang C. Hình bình hành D. Hình chữ nhật. File WORD (dành cho quý thầy, cô):
Đề học sinh giỏi lớp 11 môn Toán năm 2020 2021 trường THPT Minh Châu Hưng Yên
Nội dung Đề học sinh giỏi lớp 11 môn Toán năm 2020 2021 trường THPT Minh Châu Hưng Yên Bản PDF Đề học sinh giỏi Toán lớp 11 năm học 2020 – 2021 trường THPT Minh Châu – Hưng Yên gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 120 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề học sinh giỏi Toán lớp 11 năm 2020 – 2021 trường THPT Minh Châu – Hưng Yên : + Đề thi THPT môn Toán gồm 50 câu trắc nghiệm khách quan, mỗi câu có 4 phương án trả lời và chỉ có 1 phương án đúng, mỗi câu trả lời đúng được cộng 0,2 điểm, điểm tối đa là 10 điểm. Một học sinh có năng lực trung bình đã làm đúng được 25 câu (từ câu 1 đến câu 25), các câu còn lại học sinh đó không biết cách giải nên chọn phương án ngẫu nhiên cả 25 câu còn lại. Tính xác suất để điểm thi môn Toán của học sinh đó lớn hơn 6 điểm nhưng không vượt quá 8 điểm (làm tròn đến hàng phần nghìn). + Cho hình chóp S ABCD có đáy ABCD là hình bình hành, mặt bên SAB là tam giác vuông tại A, SA a 3, SB a 2. Điểm M nằm trên đoạn AD sao cho AM MD 2. Gọi P là mặt phẳng qua M và song song với SAB. a) Tính góc giữa hai đường thẳng SB và CD. b) Tính diện tích thiết diện của hình chóp cắt bởi mặt phẳng P. + Cho dãy số un được xác định như sau. Tìm công thức số hạng tổng quát của dãy số un và tính lim n. File WORD (dành cho quý thầy, cô):
Đề Olympic 30 tháng 4 lớp 11 môn Toán năm 2021 trường chuyên Lê Hồng Phong TP HCM
Nội dung Đề Olympic 30 tháng 4 lớp 11 môn Toán năm 2021 trường chuyên Lê Hồng Phong TP HCM Bản PDF Thứ Bảy ngày 03 tháng 04 năm 2021, trường THPT chuyên Lê Hồng Phong, quận 5, thành phố Hồ Chí Minh tổ chức kỳ thi Olympic truyền thống 30 tháng 4 môn Toán lớp 11 lần thứ XXVI (26) năm 2021. Đề Olympic 30 tháng 4 Toán lớp 11 năm 2021 trường chuyên Lê Hồng Phong – TP HCM được biên soạn theo hình thức tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 180 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề Olympic 30 tháng 4 Toán lớp 11 năm 2021 trường chuyên Lê Hồng Phong – TP HCM : + Với mỗi “bộ số đẹp” x, y ta có thể tạo ra 1 “bộ số đẹp” mới bởi 1 trong 2 phép biến đổi: hoặc đổi dấu của 1 trong 2 số hoặc cộng 1 số nguyên k nào đó vào cả 2 số sao cho x k y k là “bộ số đẹp”. Chứng minh rằng với bất kỳ 2 bộ số đẹp x, y và z, t cho trước ta luôn có thể biến đổi từ x, y thành z, t sau hữu hạn các bước biến đổi như trên. + Cho tam giác nhọn không cân ABC nội tiếp đường tròn O. Gọi A B C là chân đường cao hạ từ các đỉnh A B C. Một đường tròn qua B C tiếp xúc với cung nhỏ BC của O tại 1 A. Các điểm 1 1 B C xác định tương tự. a. Chứng minh rằng 1 1 cot cot A B B A C C. b. Vẽ các hình bình hành 1 1 B ABX C ACY. Chứng minh rằng các điểm 1 X Y A và A0 thuộc một đường tròn với AA0 là đường kính của O. c. Vẽ các hình bình hành 1 2 1 2 1 2 BACA CB AB AC BC. Chứng minh rằng đường tròn ngoại tiếp tam giác A B C 2 2 2 đi qua trực tâm của tam giác ABC. + Bộ hai số nguyên khác không x, y được gọi là “bộ số đẹp” nếu x là số lẻ, y là số chẵn x, y nguyên tố cùng nhau và 2 2 x y là số chính phương. File WORD (dành cho quý thầy, cô):