Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề định lí đảo và hệ quả của định lí Ta-lét

Tài liệu gồm 14 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề định lí đảo và hệ quả của định lí Ta-lét, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. KIẾN THỨC CẦN NHỚ 1. Định lí Ta-lét đảo: Nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác. 2. Hệ quả của định lí Ta-lét: Nếu một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới có ba cạnh tỉ lệ với ba cạnh của tam giác đã cho. II. BÀI TẬP MINH HỌA A. CÁC DẠNG TOÁN CƠ BẢN DẠNG 1. Tính độ dài đoạn thẳng. Chia đoạn thẳng cho trước thành các phần bằng nhau. 1. Tính độ dài đoạn thẳng: + Xác định đường thẳng song song với một cạnh của tam giác. + Áp dụng hệ quả của định lí Ta-lét để lập tỉ lệ thức của các đoạn thẳng. + Thay số vào hệ thức rồi giải phương trình. 2. Chia đoạn thẳng cho trước thành các phần bằng nhau cách sử dụng hệ quả của định lí Ta-lét hoặc tính chất của đường thẳng song song cách đều. DẠNG 2. Chứng minh hệ thức hình học. + Xác định đường thẳng song song với một cạnh của tam giác. + Áp dụng hệ quả của định lí Ta-lét để lập tỉ lệ thức của các đoạn thẳng. + Sử dụng các tính chất của tỉ lệ thức hoặc cộng hay nhân theo vế các đẳng thức hình học. DẠNG 3. Chứng minh hai đường thẳng song song. + Sử dụng định lí Ta-lét, lập tỉ lệ thức giữa các đoạn thẳng. + Áp dụng định lí Ta-lét đảo, kết luận hai đường thẳng song song. DẠNG 4. Vẽ thêm đường thẳng song song để chứng minh hệ thức hình học, tính tỉ số hai đoạn thẳng. + Vẽ thêm đường thẳng song song. + Áp dụng hệ quả của định lí Ta-lét để lập tỉ lệ thức giữa các đoạn thẳng. + Biến đổi tỉ lệ thức. B. DẠNG BÀI NÂNG CAO TỔNG HỢP TALET VÀ LIÊN QUAN

Nguồn: toanmath.com

Đọc Sách

Hướng dẫn ôn tập giữa kì 2 Toán 8 năm 2021 - 2022 trường THCS Thanh Am - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 tài liệu đề cương hướng dẫn ôn tập giữa học kì 2 môn Toán 8 năm học 2021 – 2022 trường THCS Thanh Am, quận Long Biên, thành phố Hà Nội. I. PHẠM VI KIẾN THỨC 1. LÝ THUYẾT 1.1. Đại số. – Biến đổi phân thức đại số. – Các dạng phương trình: phương trình ax + b = 0, phương trình tích, phương trình chứa ẩn ở mẫu. – Giải bài toán bằng cách lập phương trình dạng toán chuyển động. 1.2. Hình học. – Định lí Ta-lét (thuận, đảo), hệ quả định lí Ta-lét. – Tính chất đường phân giác trong tam dạng. – Các trường hợp đồng dạng của tam giác, tam giác vuông. 2. DẠNG BÀI 2.1. Câu hỏi tự luận. – Rút gọn biểu thức và các câu gỏi phụ (tính giá trị của biểu thức, tìm x biết giá trị của biểu thức). – Giải phương trình (ax + b = 0, phương trình tích, phương trình chứa ẩn ở mẫu). – Giải bài toán bằng cách lập phương trình (toán chuyển động). – Chứng minh tam giác đồng dạng, các tỉ lệ bằng nhau. – Vận dụng định lí Ta-lét, tính chất đường phân giác để tính độ dài cạnh. 2.2. Câu hỏi trắc nghiệm. II. CÂU HỎI THAM KHẢO A. MỘT SỐ CÂU HỎI TRẮC NGHIỆM. B. MỘT SỐ BÀI TẬP TỰ LUẬN.
Đề cương giữa học kì 2 Toán 8 năm 2021 - 2022 trường THCS Thăng Long - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương ôn tập giữa học kì 2 môn Toán 8 năm học 2021 – 2022 trường THCS Thăng Long, quận Ba Đình, thành phố Hà Nội. A. KIẾN THỨC Phương trình bậc nhất và cách giải. Phương trình đưa về dạng ax + b = 0. Phương trình tích. Phương trình chứa ẩn ở mẫu thức. Giải bài toán bằng cách lập phương trình. Diện tích hình thoi, hình thang, định lí Talet, hệ quả và định lí đảo của định lí Talet. Tính chất đường phân giác trong tam giác. Tam giác đồng dạng. B. BÀI TẬP THAM KHẢO
Chuyên đề tam giác đồng dạng bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 38 trang, được biên soạn bởi tác giả Ngô Thế Hoàng (giáo viên Toán trường THCS Hợp Đức, tỉnh Bắc Giang), hướng dẫn giải các dạng toán chuyên đề tam giác đồng dạng bồi dưỡng học sinh giỏi Toán 8, giúp các em học sinh khối lớp 8 ôn tập để chuẩn bị cho các kỳ thi chọn HSG Toán 8 cấp trường, cấp huyện, cấp tỉnh.
Chuyên đề tứ giác bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 36 trang, được biên soạn bởi tác giả Ngô Thế Hoàng (giáo viên Toán trường THCS Hợp Đức, tỉnh Bắc Giang), hướng dẫn giải các dạng toán chuyên đề tứ giác bồi dưỡng học sinh giỏi Toán 8, giúp các em học sinh khối lớp 8 ôn tập để chuẩn bị cho các kỳ thi chọn HSG Toán 8 cấp trường, cấp huyện, cấp tỉnh.