Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT chuyên Bắc Ninh lần 1

Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT chuyên Bắc Ninh lần 1 gồm 8 mã đề, mỗi mã đề gồm 5 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Nội dung đề thi bao gồm cả chương trình Toán 11 và 12, đề thi thử có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Cho hàm số y = f(x) = x^3 + 6x^2 + 9x + 3.Tồn tại hai tiếp tuyến của (C) phân biệt và có cùng hệ số góc k, đồng thời đường thẳng đi qua các tiếp điểm của hai tiếp tuyến đó cắt các trục Ox, Oy tương ứng tại A và B sao cho OA = 2017.OB. Hỏi có bao nhiêu giá trị của k thỏa mãn yêu cầu bài toán? A. 0 B. 1 C. 2 D. 3 + Giám đốc một nhà hát A đang phân vân trong việc xác định mức giá vé xem các chương trình được trình chiếu trong nhà hát. Việc này rất quan trọng, nó sẽ quyết định nhà hát thu được bao nhiêu lợi nhuận từ các buổi trình chiếu. Theo những cuốn sổ ghi chép của mình, ông ta xác định rằng: nếu giá vé vào cửa là 20 USD/người thì trung bình có 1000 người đến xem. Nhưng nếu tăng thêm 1 USD/người thì sẽ mất 100 khách hàng hoặc giảm đi 1 USD/người thì sẽ có thêm 100 khách hàng trong số trung bình. Biết rằng, trung bình, mỗi khách hàng còn đem lại 2 USD lợi nhuận cho nhà hát trong các dịch vụ đi kèm. Hãy giúp Giám đốc nhà hát này xác định xem cần tính giá vé vào cửa là bao nhiêu để nhập là lớn nhất? [ads] A. 21 USD/người B. 18 USD/người C. 14 USD/người D. 16 USD/người + Trong không gian, cho các mệnh đề sau, mệnh đề nào là mệnh đề đúng? A. Một đường thẳng vuông góc với một trong hai đường thẳng vuông góc thì song song với đường thẳng còn lại B. Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau C. Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng còn lại D. Hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì vuông góc với nhau

Nguồn: toanmath.com

Đọc Sách

Đề thi thử TN THPT 2023 môn Toán lần 1 trường THPT Đông Hà - Quảng Trị
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán lần 1 trường THPT Đông Hà, tỉnh Quảng Trị (mã đề 111); kỳ thi được diễn ra vào thứ Hai ngày 17 tháng 04 năm 2023. Trích dẫn Đề thi thử TN THPT 2023 môn Toán lần 1 trường THPT Đông Hà – Quảng Trị : + Cho hình nón (N1) có đỉnh S, chiều cao h. Một hình nón (N2) có đỉnh là tâm của đáy hình nón (N1) và có đáy là một thiết diện song song với đáy của hình nón (N1) đã cho. Tính chiều cao x của khối nón (N2) để thể tích của nó lớn nhất biết 0 < x < h. + Cho hàm số bậc ba y = f(x) có đồ thị là đường cong như hình bên dưới. Có bao nhiêu giá trị nguyên của tham số m thuộc khoảng (–20;20) để hàm số h(x) = |f2(x) + f(x) + m| có đúng 3 điểm cực trị? + Cho khối lăng trụ đứng ABC.A’B’C’ có AB = 3a, BC’ = 4a và BAC = 30°. Gọi M là trung điểm của cạnh BB’ và (a) là mặt phẳng đi qua M và song song với AB, BC’. Biết thiết diện của lăng trụ ABC.A’B’C’ cắt bởi mặt phẳng (a) có chu vi bằng 9a. Thể tích khối lăng trụ đã cho bằng?
Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 2 trường THPT Phụ Dực - Thái Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT Quốc gia năm học 2022 – 2023 môn Toán lần 2 trường THPT Phụ Dực, tỉnh Thái Bình; đề thi có đáp án mã đề 101 102 103 104 105 106 107 108. Trích dẫn đề thi thử tốt nghiệp THPT 2023 môn Toán lần 2 trường THPT Phụ Dực – Thái Bình : + Giải bóng đá Mini cấp trường của một trường THPT, có 16 đội đăng kí tham dự trong đó có 3 đội 12A1, 12A2 và 12A3. Ban tổ chức cho bốc thăm ngẫu nhiên để chia đều 16 đội vào 4 bảng (mỗi bảng 4 đội) để đá vòng loại. Tính xác suất để 3 đội của 3 lớp 12A1, 12A2 và 12A3 nằm ở 3 bảng khác nhau. + Cho một cổ vật hình trụ có chiều cao đo được là 81cm, do bị hư hại nên khi tiến hành đo đạc lại thu được AB BC CA 50cm 70cm 80cm, với ABC thuộc đường tròn nắp trên như hình vẽ. Thể tích khối cổ vật ban đầu gần nhất với số nào sau đây? + Cho hàm số 2 3 2023 2024 fx x 3 2 7 3 10 4. Biết rằng tập hợp tất cả các giá trị thực của tham số m để hàm số 4 2 h x f x x mx 8 có số điểm cực tiểu nhiều nhất là S ab c. Giá trị của biểu thức 2 2 T a ab b abc thuộc khoảng nào sau đây?
Đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở GDĐT Yên Bái
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở Giáo dục và Đào tạo tỉnh Yên Bái (mã đề 001); kỳ thi được diễn ra vào ngày 11 tháng 04 năm 2023. Trích dẫn Đề thi thử tốt nghiệp THPT năm 2023 môn Toán sở GD&ĐT Yên Bái : + Một nhóm gồm 10 học sinh trong đó có hai bạn A và B đứng ngẫu nhiên thành một hàng. Xác suất để hai bạn A và B đứng cạnh nhau là? + Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng x = 1 và x = 3, biết rằng khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x (1 ≤ x ≤ 3) thì được thiết diện là một hình chữ nhật có độ dài hai cạnh là 3x và 3×2 – 2. + Trong không gian Oxyz, cho điểm A(1;2;−3) và mặt phẳng (P): 2x + 2y − z + 9 = 0. Đường thẳng d đi qua A và vuông góc với mặt phẳng (Q): 3x + 4y – 4z + 5 = 0 cắt mặt phẳng (P) tại điểm B. Điểm M nằm trong mặt phẳng (P), nhìn đoạn AB dưới góc vuông và độ dài MB lớn nhất. Tính độ dài MB.
Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 2 liên trường THPT - Nghệ An
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm 2023 môn Toán lần 2 liên trường THPT trực thuộc sở GD&ĐT tỉnh Nghệ An; đề thi có đáp án tất cả các mã đề; kỳ thi được diễn ra vào chiều thứ Bảy ngày 15 tháng 04 năm 2023. Trích dẫn Đề thi thử tốt nghiệp THPT 2023 môn Toán lần 2 liên trường THPT – Nghệ An : + Người ta sản xuất thùng phuy sắt có hình dạng là một hình trụ (có nắp đậy kín) bằng cách cán và gò các tấm thép có độ dày 1mm, biết chiều cao của thùng phuy là 876mm, đường kính ngoài của thùng phuy là 580mm và khối lượng riêng của thép là 7850kg/m3. Hỏi mỗi thùng phuy nặng khoảng bao nhiêu kg (tính gần đúng sau dấu phẩy đến 2 chữ số thập phân)? + Cho hàm số y = f(x) có đạo hàm là f'(x) = (x – a)(x − b) với a, b là hai hằng số và a < b, biết rằng f(b) = 0 và hàm số g(x) = |4×3 + (2 – 3f(a))x2 – 2f(a)x + m| (với m là tham số). Khi đó hàm số g[f(x)] có tối đa bao nhiêu điểm cực trị? + Trong không gian Oxyz, cho mặt phẳng (P): 2x + ay + bz + c = 0 chứa đường thẳng d là giao tuyến của hai mặt phẳng (A): x + y – z + 1 = 0, (B): x + y – 2z − 1 = 0. Biết rằng khoảng cách từ điểm M(1;2;1) đến mặt phẳng (P) bằng 3. Khi đó giá trị a + b + c bằng?