Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Công phá đề thi THPT QG môn Toán bằng kỹ thuật Casio - Lâm Hữu Minh

Tài liệu gồm 122 trang hướng dẫn sử dụng Casio giải các dạng toán trong đề thi THPT Quốc gia, tài liệu do tác giả Lâm Hữu Minh biên soạn. Kỹ thuật CASIO luyện thi THPT Quốc gia là 1 tập hợp những thao tác sử dụng MTBT CASIO theo cách khác bình thường mà thậm chí những người thi Học sinh giỏi giải toán trên máy tính CASIO cũng chưa chắc đã thực hiện được. Bởi vì Kỹ thuật CASIO ở đây được sáng tạo dưới hình thức luyện thi THPT Quốc gia, mà những bài toán trong đề thi Học sinh giỏi giải toán trên máy tính CASIO thì lại thuộc một dạng khác hẳn. Kỹ thuật CASIO hướng đến mục tiêu: + Thứ nhất: luyện cho các bạn sự dẻo tay khi bấm máy tính trong quá trình giải toán. Sau 1 thời gian luyện tập nó sẽ khiến các bạn nhanh nhạy hơn khi cầm máy trước 1 vấn đề dù là nhỏ, dẫn đến tăng tốc độ “CÔNG PHÁ” trước giới hạn của thời gian. [ads] + Thứ hai: đưa ra cho các bạn những phương pháp bấm máy hiệu quả để tránh những thao tác thuộc loại “trâu bò” mà lâu nay nhiều bạn vẫn đang bấm, xử lí đẹp những số liệu xấu, và tìm ra hướng giải ngắn nhất cho bài toán. Dù đề thi ngày càng hướng đến tư duy, suy luận cao và tìm cách hạn chế việc bấm máy, nhưng một khi đã học Kỹ thuật CASIO rồi thì còn lâu Bộ mới hạn chế được các bạn sử dụng máy tính, miễn là được mang máy vào phòng thi! + Thứ ba: luyện cho các bạn sự linh hoạt khi sử dụng máy tính. Đó là niềm đam mê nghiên cứu khám phá những tính năng mới, lối tư duy bài toán kết hợp hài hòa giữa việc giải tay và giải máy, và óc sáng tạo để tìm ra những phương pháp ngày càng ngắn gọn, nhắm đến tối ưu hóa quá trình giải toán. Và từ đó, các bạn có thể tự nghiên cứu mở rộng Kỹ thuật CASIO sang những môn học tự nhiên khác. + Thứ tư: thành thục Kỹ thuật CASIO kết hợp với vốn kiến thức Toán học của các bạn, sẽ tạo nên 1 tâm lý vững vàng khi bước vào kì thi (tất nhiên là không được phép chủ quan đâu đấy).

Nguồn: toanmath.com

Đọc Sách

Tài liệu ôn tập lý thuyết thi tốt nghiệp Trung học Phổ thông môn Toán
Tài liệu gồm 21 trang, được biên soạn bởi thầy giáo Huỳnh Phú Sĩ, hướng dẫn học sinh lớp 12 ôn tập lý thuyết để chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông môn Toán. MỤC LỤC : Chủ đề 1 . Khảo sát sự biến thiên và đồ thị của hàm số 2. 1. Sự biến thiên của hàm số 2. 2. Cực trị của hàm số 2. 3. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số 3. 4. Đường tiệm cận 3. 5. Khảo sát đồ thị hàm số 3. Chủ đề 2 . Lũy thừa – Mũ – Logarit 6. 1. Lũy thừa 6. 2. Hàm số lũy thừa 7. 3. Logarit 7. 4. Hàm số mũ và hàm số logarit 8. 5. Phương trình mũ và phương trình logarit 9. 6. Bất phương trình mũ và bất phương trình logarit 9. Chủ đề 3 . Nguyên hàm – Tích phân và ứng dụng 10. 1. Nguyên hàm 10. 2. Tích phân 10. 3. Ứng dụng của tích phân trong hình học 11. Chủ đề 4 . Số phức 12. 1. Số phức 12. 2. Phép cộng, trừ, nhân, chia số phức 12. Chủ đề 5 . Khối đa diện 13. 1. Khái niệm về hình đa diện và khối đa diện 13. 2. Khối đa diện đều 13. 3. Thể tích khối đa diện 13. Chủ đề 6 . Khối tròn xoay 14. 1. Hình nón và hình trụ 14. 2. Hình cầu 14. Chủ đề 7 . Phương pháp tọa độ trong không gian 16. 1. Hệ tọa độ Oxyz 16. 2. Phương trình mặt cầu 17. 3. Phương trình mặt phẳng 17. 4. Phương trình đường thẳng 18. Chủ đề 8 . Dãy số – Quy tắc đếm – Xác suất – Góc – Khoảng cách 19. 1. Dãy số 19. 2. Quy tắc đếm 19. 3. Xác suất 20. 4. Góc và Khoảng cách trong không gian.
Làm ngược và loại trừ trong giải toán trắc nghiệm - Trần Tuấn Anh
Tài liệu gồm 17 trang, được biên soạn bởi thầy giáo Trần Tuấn Anh, hướng dẫn sử dụng phương pháp làm ngược và loại trừ trong giải toán trắc nghiệm. 1. “Làm ngược”: Từ đáp án, kiểm tra các điều kiện của bài toán để xác thực tính đúng – sai: Ta cần chú ý rằng, các đáp án cũng chính là giả thiết của bài toán, gợi ý giúp ta giải quyết bài toán trắc nghiệm. 2. “Loại trừ”: Từ giả thiết, bóc tách ra các điều kiện độc lập, kiểm tra các đáp án vi phạm điều kiện để loại trừ. Đối với câu hỏi có chọn lựa phương án đúng, đáp án nào vi phạm điều kiện bài toán, sẽ bị loại trừ. Nếu câu hỏi trắc nghiệm có bốn đáp án, mà trong đó có một đáp án đúng, chúng ta xác định được ba trong bốn đáp án đã cho là sai thì đáp án đúng là đáp án còn lại. Xem thêm : + Sử dụng chủ yếu suy luận trong giải toán trắc nghiệm – Trần Tuấn Anh + Phương pháp chọn đại diện giải toán trắc nghiệm – Trần Tuấn Anh
Tổng hợp công thức ôn thi tốt nghiệp THPT môn Toán - Lê Quốc Bảo
Tài liệu gồm 19 trang, được biên soạn bởi thầy giáo Lê Quốc Bảo, tổng hợp công thức ôn thi tốt nghiệp THPT môn Toán. Bảng đạo hàm cơ bản. Bảng nguyên hàm cơ bản. Phần I . ĐẠI SỐ VÀ GIẢI TÍCH. I. Tổ hợp – Xác suất. II. Cấp số cộng, cấp số nhân. IV. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số. V. Hàm số lũy thừa, hàm số mũ và hàm số lôgarit. VI. Ứng dụng của tích phân. VII. Số phức. Phần II . HÌNH HỌC. VIII. Hình chóp đều. IX. Khối đa diện đều. X. Khối nón, khối trụ và khối cầu. XI. Không gian Oxyz. XII. Phương trình đường thẳng.