Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán vào 10 THPT năm 2023 trường THCS Nguyễn Đăng Đạo - Bắc Ninh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán ôn thi vào lớp 10 THPT năm học 2022 – 2023 trường THCS Nguyễn Đăng Đạo, thành phố Bắc Ninh, tỉnh Bắc Ninh; đề thi gồm 40 câu trắc nghiệm (04 điểm – 50 phút) và 04 câu tự luận (06 điểm – 70 phút); kỳ thi được diễn ra vào ngày 15 tháng 02 năm 2023. Trích dẫn Đề KSCL Toán vào 10 THPT năm 2023 trường THCS Nguyễn Đăng Đạo – Bắc Ninh : + Khẳng định nào sau đây đúng? A. Góc nội tiếp là góc có đỉnh trùng với tâm của đường tròn. B. Góc nội tiếp là góc có đỉnh nằm trên đường tròn và hai cạnh là hai dây của đường tròn. C. Góc nội tiệp là góc có đỉnh nằm trên đường tròn và có cạnh chứa dây của đường tròn. D. Góc nội tiếp là góc có đỉnh nằm trên đường tròn và hai cạnh chứa hai dây của đường tròn. + Một người đang ở trên tầng thượng của một tòa nhà quan sát con đường chạy thẳng đến chân tòa nhà (hình vẽ minh họa phía dưới). Anh ta nhìn thấy một người điều khiển chiếc xe máy đi về phía tòa nhà với phương nhìn tạo với phương nằm ngang một góc bằng 30°. Sau 6 phút, người quan sát vẫn nhìn thấy người điểu khiển chiếc xe máy, nhưng phương nhìn tạo với phương nằm ngang một góc bằng 60°. Hỏi sau bao nhiêu phút nữa thì xe mày sẽ chạy đến chân tòa nhà? Cho biết vận tốc xe máy không đổi. + Bạn Nam mua hai món hàng và phải trả tổng cộng 480000 đồng, trong đó đã tính cả 40000 đồng thuế giá trị gia tăng (viết tắt là thuế VAT). Biết rằng thuế VAT đối với mặt hàng thứ nhất là 10%, thuế VAT đối với mặt hàng thứ hai là 8%. Hỏi bạn Nam đã mua mỗi món hàng với giá là bao nhiêu tiền?

Nguồn: toanmath.com

Đọc Sách

Đề KSCL giữa kì 2 Toán 9 năm 2018 - 2019 phòng GDĐT Hà Đông - Hà Nội
Vừa qua, phòng Giáo  dục và Đào tạo quận Hà Đông, Hà Nội đã tổ chức kỳ thi khảo sát chất lượng giữa học kì 2 môn Toán dành cho học sinh khối lớp 9, nhằm kiểm tra kiến thức môn Toán của học sinh lớp 9 trong giai đoạn từ đầu đến giữa học kỳ 2 năm học 2018 – 2019. Đề KSCL giữa kì 2 Toán 9 năm 2018 – 2019 phòng GD&ĐT Hà Đông – Hà Nội gồm 01 trang với 04 bài toán tự luận, thời gian làm bài 60 phút. Trích dẫn đề KSCL giữa kì 2 Toán 9 năm 2018 – 2019 phòng GD&ĐT Hà Đông – Hà Nội : + Cho Parabol (P): y = -x^2 và đường thẳng (d): y = 2x – 3. a) Vẽ Parabol (P) và đường thẳng (d) trên cùng một mặt phẳng tọa độ. b) Tìm toạ độ giao điểm của (P) và (d). [ads] + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai tổ sản xuất cũng nhận chung được một đơn hàng, nếu hai tổ cùng làm thì sau 15 ngày sẽ xong. Tuy nhiên, sau khi cùng làm được 6 ngày thì tổ I có việc bận phải chuyển công việc khác, do đó tổ II làm một mình 24 ngày nữa thì hoàn thành đơn hàng. Hỏi nếu làm một mình thì mỗi tổ làm xong trong bao nhiêu ngày? + Cho (O; R), MN là dây không đi qua tâm. C, D là hai điểm bất kì thuộc dây MN (C, D không trùng với M, N). A là điểm chính giữa của cung nhỏ MN. Các đường thẳng AC và AD lần lượt cắt (O) tại điểm thứ hai là E, F. a) Chứng minh góc ACD = AFE và tứ giác CDFE nội tiếp. b) Chứng minh AM^2 = AC.AE. c) Kẻ đường kính AB. Gọi I là tâm đường tròn ngoại tiếp tam giác MCE. Chứng minh M, L, B thẳng hàng.
Đề KSCL giữa HK2 Toán 9 năm 2018 - 2019 phòng GDĐT Bắc Từ Liêm - Hà Nội
Đề KSCL giữa HK2 Toán 9 năm 2018 – 2019 phòng GD&ĐT Bắc Từ Liêm – Hà Nội được biên soạn nhằm kiểm tra lại các nội dung kiến thức môn Toán lớp 9 đã học từ đầu học kỳ 2 năm học 2018 – 2019 đến nay, đề được biên soạn theo hình thức tự luận với 05 bài toán, học sinh làm bài trong 120 phút, cấu trúc đề khá giống với các đề thi tuyển sinh vào lớp 10 môn Toán. Trích dẫn đề KSCL giữa HK2 Toán 9 năm 2018 – 2019 phòng GD&ĐT Bắc Từ Liêm – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một người mua một cái bàn là và một cái quạt điện với tổng số tiền theo giá niêm yết là 750 nghìn đồng. Khi trả tiền người đó được khuyến mãi giảm 10% đối với giá tiền bàn là và 20% đối với giá tiền quạt điện so với giá niêm yết. Vì vậy, người đó phải trả tổng cộng 625 nghìn đồng. Tính giá tiền của cái bàn là và cái quạt điện theo giá niêm yết? [ads] + Cho (O;R) đường kính AB cố định, điểm H nằm giữa hai điểm A và O. Kẻ dây CD vuông góc với AB tại H. Lấy điểm F thuộc cung AC nhỏ; BF cắt CD tại E; AF cắt tia DC tại I. 1) Chứng minh: Tứ giác AHEF là tứ giác nội tiếp. 2) Chứng minh: góc BFH = EAB, từ đó suy ra BE.BF = BH.BA. 3) Đường tròn ngoại tiếp tam giác IEF cắt AB tại điểm thứ hai M. Chứng minh: tam giác HBE đồng dạng với tam giác HIA và điểm M thuộc (O;R). 4) Tìm vị trí của H trên OA để tam giác OHD có chu vi lớn nhất.
Đề KSCL học kỳ 2 Toán 9 năm 2020 - 2021 sở GDĐT Nam Định
Thứ Ba ngày 19 tháng 04 năm 2021, sở Giáo dục và Đào tạo tỉnh Nam Định tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 9 THCS giai đoạn cuối học kỳ 2 năm học 2020 – 2021. Đề KSCL học kỳ 2 Toán 9 năm 2020 – 2021 sở GD&ĐT Nam Định được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 08 câu, chiếm 02 điểm, phần tự luận gồm 05 câu, chiếm 08 điểm, thời gian làm bài 120 phút.
Đề KSCL Toán 9 năm 2022 - 2023 trường THCS Lê Quý Đôn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 năm học 2022 – 2023 trường THCS Lê Quý Đôn, quận Cầu Giấy, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 27 tháng 05 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề KSCL Toán 9 năm 2022 – 2023 trường THCS Lê Quý Đôn – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một tàu tuần tra chạy ngược dòng 60km, sau đó chạy xuôi dòng 48km trên cùng một dòng sông có vận tốc của dòng nước là 2km/h. Tính vận tốc của tàu tuần tra khi nước yên lặng, biết thời gian xuôi dòng ít hơn thời gian ngược dòng là 1 giờ. + Một thùng đựng sơn hình trụ có đường kính đáy là 16cm và chiều cao là 24cm. Tính diện tích vật liệu để tạo nên một vỏ thùng đựng sơn đó (cho biết phần mép nối không đáng kể và lấy π ≈ 3,14). + Cho tam giác ABC (AB < AC) nội tiếp đường tròn tâm O. Đường cao BN và CM cắt nhau tại H. 1) Chứng minh tứ giác BMNC nội tiếp. 2) Chứng minh 2 BM BA CN CA BC. 3) Gọi I là trung điểm của BC. Đường tròn đường kính AH cắt đường tròn (O) tại điểm thứ hai K (K khác A). Chứng minh MI là tiếp tuyến của đường tròn ngoại tiếp ∆AMN và ba điểm K, H, I thẳng hàng?