Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Lời giải bài toán bất đẳng thức, cực trị trong đề tuyển sinh môn Toán

Nội dung Lời giải bài toán bất đẳng thức, cực trị trong đề tuyển sinh môn Toán Bản PDF - Nội dung bài viết Giải bài toán bất đẳng thức, cực trị trong đề tuyển sinh môn Toán Giải bài toán bất đẳng thức, cực trị trong đề tuyển sinh môn Toán Bài toán bất đẳng thức và cực trị luôn là những thách thức lớn đối với học sinh khi tham gia vào kì thi tuyển sinh vào lớp 10 môn Toán. Đây là phần bài thi mang tính quyết định, giúp trường chọn lọc những học sinh giỏi và xuất sắc nhất để vào học tại các lớp chuyên Toán tại các trường THPT chuyên. Để giúp các em học sinh lớp 9 chuẩn bị cho kỳ thi tuyển sinh, Sytu đã tổng hợp tài liệu lời giải cho bài toán bất đẳng thức, cực trị trong đề thi tuyển sinh lớp 10 môn Toán. Tài liệu này được biên soạn bởi tác giả Trịnh Bình, chuyên gia giàu kinh nghiệm trong lĩnh vực giáo dục Toán học. Bên dưới là một số ví dụ về nội dung và cấu trúc của tài liệu lời giải: Ví dụ 1: Cho các số dương a, b, c thỏa mãn abc = a + b + c + 2. Hãy tìm giá trị lớn nhất của biểu thức P = 1/√(a^2 + b^2) + 1/√(b^2 + c^2) + 1/√(c^2 + a^2). Ví dụ 2: Giả sử x, y, z là các số thực trong đoạn [0;2] và x + y + z = 3. Hãy chứng minh rằng x^2 + y^2 + z^2 < 6 và tìm giá trị lớn nhất của biểu thức P = x^3 + y^3 + z^3 – 3xyz. Ví dụ 3: Cho x, y, z là các số thực dương thỏa mãn xy + yz + 4zx = 32. Tìm giá trị nhỏ nhất của biểu thức P = x^2 + 16y^2 + 16z^2. Với tài liệu lời giải bài toán bất đẳng thức, cực trị trong đề thi tuyển sinh môn Toán, các em học sinh sẽ được trang bị kiến thức và kỹ năng cần thiết để tự tin giải quyết các dạng bài tương tự trong kỳ thi sắp tới.

Nguồn: sytu.vn

Đọc Sách

Các bài toán thực tế trong đề tuyển sinh vào 10 THPT
Nội dung Các bài toán thực tế trong đề tuyển sinh vào 10 THPT Bản PDF - Nội dung bài viết Cách giải các bài toán thực tế trong đề thi tuyển sinh vào 10 THPT Cách giải các bài toán thực tế trong đề thi tuyển sinh vào 10 THPT Để giúp học sinh chuẩn bị tốt cho kỳ thi tuyển sinh vào lớp 10 THPT, chúng tôi đã biên soạn tài liệu hướng dẫn giải các bài toán thực tế. Tài liệu này gồm 102 trang, cung cấp phương pháp giải chi tiết từng bước một để giúp học sinh hiểu rõ vấn đề và áp dụng vào thực tế. Trên thị trường hiện nay, có nhiều dạng bài toán mới được đưa vào đề thi tuyển sinh, nên việc nắm vững cách giải các bài toán thực tế là rất quan trọng. Chúng tôi hy vọng rằng tài liệu này sẽ giúp học sinh tự tin và thành công trong kỳ thi tuyển sinh sắp tới.
Các chuyên đề lớp 10 môn Toán ôn thi vào
Nội dung Các chuyên đề lớp 10 môn Toán ôn thi vào Bản PDF - Nội dung bài viết Các chuyên đề lớp 10 môn Toán ôn thi vào Các chuyên đề lớp 10 môn Toán ôn thi vào Được biên soạn từ 190 trang tư liệu, các chuyên đề lớp 10 môn Toán không chỉ giúp học sinh ôn thi hiệu quả mà còn giúp họ rèn luyện kỹ năng giải các bài toán một cách linh hoạt. A. Các bài toán rút gọn căn thức: - Dạng 1: Biểu thức dưới dấu căn là một số thực dương. - Dạng 2: Sử dụng hằng đẳng thức √A^2 = |A|. - Dạng 3: Biểu thức dưới dấu căn đưa được về hằng đẳng thức √A^2 = |A|. - Dạng 4: Rút gọn tổng hợp bằng cách sử dụng trục căn thức, hằng đẳng thức, phân tích thành nhân tử. - Dạng 5: Bài toán chứa ẩn dưới dấu căn và các ý toán phụ. B. Các bài toán giải hệ phương trình: - Giải hệ phương trình và một số ý phụ. - Giải hệ phương trình bậc cao. C. Giải bài toán bằng cách lập hệ phương trình: - Dạng 1: Toán về quan hệ số. - Dạng 2: Toán chuyển động. - Dạng 3: Toán về năng suất, khối lượng công việc, phần trăm. - Dạng 4: Toán có nội dung hình học. - Dạng 5: Các dạng toán khác. D. Giải bài toán bằng cách lập phương trình bậc hai: - Dạng 1: Toán về quan hệ số. - Dạng 2: Toán chuyển động. - Dạng 3: Toán về năng suất, khối lượng công việc, phần trăm. - Dạng 4: Toán có nội dung hình học. - Dạng 5: Các dạng toán khác. E. Hàm số bậc nhất: F. Hàm số bậc hai: - Sự tương giao giữa đường thẳng và đồ thị hàm số bậc hai. G. Phương trình bậc hai một ẩn, hệ thức Vi-et và ứng dụng: - Dạng 1: Giải phương trình và phương trình quy về phương trình bậc hai. - Dạng 2: Hệ thức Vi-et và ứng dụng. - Dạng 3: Phương trình chứa tham số. H. Bất đẳng thức: - Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên. - Kỹ thuật chọn điểm rơi trong bài toán cực trị đạt được tại tâm.
Tổng hợp các bài toán hình học phẳng ôn thi vào THPT năm học 2018 2019
Nội dung Tổng hợp các bài toán hình học phẳng ôn thi vào THPT năm học 2018 2019 Bản PDF - Nội dung bài viết Tổng hợp bài tập hình học phẳng ôn thi vào THPT 2018-2019 Tổng hợp bài tập hình học phẳng ôn thi vào THPT 2018-2019 Tài liệu này được biên soạn bởi hai tác giả là Tạ Công Hoàng và Nguyễn Đăng Khoa, với 119 trang tập hợp các bài toán hình học phẳng ôn thi vào lớp 10 THPT trong năm học 2018-2019. Hình học phẳng là một dạng toán không thể thiếu khi ôn thi vào trường phổ thông.
Tổng ôn tập Toán THCS thi vào
Nội dung Tổng ôn tập Toán THCS thi vào Bản PDF - Nội dung bài viết Tổng ôn tập Toán THCS thi vào lớp 10 Tổng ôn tập Toán THCS thi vào lớp 10 Cuốn sách Tổng ôn tập Toán THCS thi vào lớp 10 là tài liệu học tập quan trọng cho học sinh lớp 9 chuẩn bị cho kỳ thi chuyển cấp lên lớp 10. Sách bao gồm 193 trang hệ thống các chủ đề Toán học chính từ lớp 6 đến lớp 9, giúp học sinh ôn tập và củng cố kiến thức một cách toàn diện. Với sự biên soạn của các tác giả uy tín như Mai Công Mãn, Nguyễn Trọng Dương, Nguyễn Thế Vận, Nguyễn Thị Hiền, Thiều Thị Huyền, sách mang đến cho học sinh những kiến thức cơ bản và quan trọng trong môn Toán. Nội dung sách được chia thành hai phần chính: phần Đại số và phần Hình học, bao gồm các chủ đề như biến đổi đồng nhất, hàm số và đồ thị, phương trình, hệ phương trình, định lý Talet, đường tròn, hình học không gian. Qua sách Tổng ôn tập Toán THCS thi vào lớp 10, học sinh sẽ có cơ hội ôn tập lại những kiến thức đã học, rèn luyện kỹ năng giải các bài tập phức tạp và chuẩn bị tốt cho kỳ thi vào lớp 10. Đồng thời, sách cũng là tài liệu hữu ích để học sinh tiếp tục học tốt môn Toán THPT sau này.