Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử năm 2019 2020 môn Toán trường Trần Nhân Tông Hà Nội

Nội dung Đề thi thử năm 2019 2020 môn Toán trường Trần Nhân Tông Hà Nội Bản PDF - Nội dung bài viết Đề thi thử năm 2019 - 2020 môn Toán trường Trần Nhân Tông Hà Nội Đề thi thử năm 2019 - 2020 môn Toán trường Trần Nhân Tông Hà Nội Vào Chủ Nhật ngày 07 tháng 04 năm 2019, trường THPT Trần Nhân Tông - Hà Nội đã tổ chức kỳ thi thử môn Toán tuyển sinh vào lớp 10 khối THPT cho năm học 2019 - 2020 dành cho học sinh lớp 9. Mục tiêu của kỳ thi là giúp học sinh nắm được lực học hiện tại của mình và làm quen với dạng đề thi môn Toán. Bài thi bao gồm 01 trang với 05 bài toán tự luận, thời gian làm bài là 120 phút và đề thi có lời giải chi tiết. Trích dẫn một số bài toán trong đề thi là: Bài 1: Một hình chữ nhật có diện tích bằng 120m. Nếu tăng chiều rộng thêm 2m và giảm chiều dài đi 5m, thu được một hình vuông. Hãy tìm chiều dài và chiều rộng của hình chữ nhật ban đầu theo mét. Bài 2: Cho đường tròn (O) và dây cung BC cố định không đi qua O. A là một điểm di động trên cung lớn BC sao cho tam giác ABC nhọn. Chứng minh một số tính chất liên quan đến tứ giác BCEF và giao điểm của đường thẳng AK với đường tròn (O). Đề thi thử này không chỉ giúp học sinh ôn tập kiến thức mà còn giúp họ rèn luyện kỹ năng giải bài toán và làm quen với cấu trúc đề thi tuyển sinh sắp tới. Đây là cơ hội tốt để các em tự đánh giá năng lực và chuẩn bị tốt cho kỳ thi chính thức.

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Bắc Giang
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Bắc Giang gồm 5 bài toán tự luận.
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Hà Nội (Chuyên Tin)
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Hà Nội (Chuyên Tin) gồm 5 bài toán tự luận, có lời giải chi tiết.
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Đồng Tháp
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Đồng Tháp gồm 5 bài toán tự luận. Trích một số bài toán trong đề: + Để tạo sân chơi cho học sinh tham gia các hoạt động tìm hiểu về hình ảnh và con người Đồng Tháp, Đoàn Thanh Niên Cộng Sản Hồ Chí Minh của một trường đã tổ chức hội thi Đồng Tháp trong trái tim tôi với các nội dung về hoạt động khởi nghiệp, du lịch trải nghiệm những địa danh ,nét văn hóa đặc trưng làng nghề, các món ăn, cây trái … của tỉnh. Sau hai vòng thi Ban Tổ Chức đã chọn ra ba đội xuất sắc là Hoa Sen, Hoa Súng, Hoa Tràm vào thi chung kết. Theo qui định của Ban Tổ Chức Hội Thi, mỗi đội phải trả lời 12 câu hỏi, mỗi câu trả lời đúng được cộng 10 điểm, mỗi câu trả lời sai trừ 3 điểm, mỗi câu không trả lời thì không được điểm. Trải qua các câu hỏi thì, đội Hoa Sen được 61 điểm. Hỏi đội Hoa Sen đã trả lời đúng, sai và không trả lời bao nhiêu câu hỏi? [ads] + Thực hiện đổi mới phương pháp dạy học ,đổi mới kiểm tra đánh giá theo hướng phát triển năng lục học sinh, trong một tiết dạy hình học, một giáo viên đã ứng dụng công nghệ thông tin, sử dụng phần mềm biểu diễn cho học sinh quan sát trực quan. Cụ thể: Hình thang cân ABCD (AB song song với CD), có AB = 30cm, CD = 54cm và đường cao AH = 9cm. Cho hình thang này quay quanh cạnh đáy CD. Em hãy giúp bạn tính: 1/ Thể tích của hình tạo thành. 2/ Diện tích mặt ngoài của hình tạo thành.
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Quãng Ngãi
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Quãng Ngãi gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho hai điểm A, B phân biệt nằm trong góc nhọn xOy sao cho góc xOA = góc yOB. Gọi M, N lần lượt là hình chiếu vuông góc của A lên các tia Ox, Oy và P, Q lần lượt là hình chiếu vuông góc của B lên các tia Ox, Oy .Gỉa sử M, N, P, Q đôi một phân biệt. Chứng minh rằng bốn điểm M,N,P,Q cùng thuộc một đường tròn. [ads] + Cho tam giác AB không cân, có ba góc nhọn. Một đường tròn đi qua B, C cắt các cạnh AC, AB lần lượt tại D, E. Gọi M, N lần lượt là trung điểm của BD, CE a. Chứng minh rằng các tam giác ABD, ACE đồng dạng với nhau và MAB = NAC. b. Gọi H là hình chiếu vuông góc của M lên AB, K là hình chiếu vuông góc của N lên AC và I là trung điểm của MN. Chứng minh rằng tam giác IHK cân. + Cho 9 số nguyên dương đôi một phân biệt ,các số đó đều chỉ chứa các ước số nguyên tố gồm 2, 3, 5. Chứng minh rằng trong 9 số đã cho tồn tại 2 số mà tích của chúng là một số chính phương.