Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 - 2023 sở GDĐT Lâm Đồng

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Lâm Đồng; kỳ thi được diễn ra vào thứ Sáu ngày 03 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 – 2023 sở GD&ĐT Lâm Đồng : + An mua một chiếc laptop cũ đã qua sử dụng 1 năm tại cửa hàng X với số tiền là 29,6 triệu đồng. Sau khi sử dụng được thêm 3 năm nữa, An mang chiếc laptop đó ra cửa hàng X để bán, cửa hàng mua lại với số tiền 17 triệu đồng. An thắc mắc về sự chênh lệch nhiều giữa giá mua và giá bán nên được nhân viên cửa hàng giải thích về mối liên hệ giữa giá tiền của một chiếc laptop với thời gian sử dụng biểu thị dưới dạng một hàm số y = ax + b (x là số năm sử dụng, y là giá tiền). Hãy tính giá tiền ban đầu của chiếc laptop nêu trên khi chưa qua sử dụng. + Hưởng ứng phong trào viết thư gửi các bạn thiếu nhi tại huyện đảo Trường Sa nhân dịp Tết Nguyên đán, hai bạn Lâm và Đồng mua số tờ giấy trắng bằng nhau và mua số phong bì bằng nhau. Lâm sử dụng một tờ giấy cho mỗi bức thư trong khi đó Đồng sử dụng ba tờ giấy cho mỗi bức thư. Biết rằng, Lâm dùng hết số phong bị đã mua còn dư 10 tờ giấy, Đồng dùng hết số giấy đã mua còn dư 10 phong bì. Tìm số tờ giấy mỗi bạn đã mua. + Một cửa hàng bán giày thể thao mỗi tuần bán được 50 đôi giày với giá là 500 nghìn đồng một đôi. Cửa hàng dự định giảm giá bán, ước tính nếu cứ giảm giá bán mỗi đôi 1 nghìn đồng thì số giày mỗi tuần bán tăng thêm được 1 đôi. Xác định giá bán để mỗi tuần cửa hàng giày thể thao thu được lợi nhuận cao nhất, biết rằng giá nhập về ban đầu cho mỗi đôi giày thể thao là 300 nghìn đồng.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn HSG Toán 9 năm học 2018 - 2019 sở GD và ĐT Hà Nội
THCS. giới thiệu đến các bạn nội dung đề thi chọn HSG Toán 9 năm học 2018 – 2019 sở GD và ĐT Hà Nội, kỳ thi được tổ chức vào ngày 10 tháng 1 năm 2019 nhằm tuyển chọn các em học sinh lớp 9 xuất sắc môn Toán tại Hà Nội để tuyên dương, khen thưởng và thành lập đội tuyển học sinh giỏi Toán thành phố để tham dự kỳ thi HSG Toán 9 cấp quốc gia, lời giải trong đề thi được trình bày bởi thầy Võ Quốc Bá Cẩn. Trích dẫn đề thi chọn HSG Toán 9 năm học 2018 – 2019 sở GD và ĐT Hà Nội : + Biết a; b là các số nguyên dương thỏa mãn a^2 – ab + b^2 chia hết cho 9; chứng minh rằng cả a và b đều chia hết cho 3. + Với các số thực dương a; b; c thay đổi thỏa mãn điều kiện a^2 + b^2 + c^2 + 2abc = 1; tìm giá trị lớn nhất của biểu thức P = ab + bc + ca – abc. [ads] + Xét bảng ô vuông cỡ 10 x 10 gồm 100 hình vuông có cạnh 1 đơn vị. Người ta điền vào mỗi ô vuông của bảng một số nguyên tùy ý sao cho hiệu hai số được điền ở hai ô chung cạnh bất kỳ đều có giá trị tuyệt đối không vượt quá 1. Chứng minh rằng tồn tại một số nguyên xuất hiện trong bảng ít nhất 6 lần.
Đề thi học sinh giỏi Toán 9 năm 2018 - 2019 phòng GDĐT Bình Xuyên - Vĩnh Phúc
Đề thi học sinh giỏi Toán 9 năm 2018 – 2019 phòng GD&ĐT Bình Xuyên – Vĩnh Phúc gồm 01 trang với 10 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2018 – 2019 phòng GD&ĐT Bình Xuyên – Vĩnh Phúc : + Cho p là một số nguyên tố thỏa mãn 3 3 pa b (với a b là hai số nguyên dương phân biệt). Chứng minh rằng nếu lấy 4 p chia cho 3 và loại bỏ phần dư thì nhận được một số là bình phương của một số nguyên lẻ. + Cho hình thoi ABCD có góc A nhọn, gọi O là giao điểm của hai đường chéo. Kẻ OH vuông góc với đường thẳng AB tại H. Trên tia đối của tia BC lấy điểm M (điểm M không trùng với điểm B), trên tia đối của tia DC lấy điểm N sao cho đường thẳng HM song song với đường thẳng AN. Chứng minh rằng MOB OND. + Từ 625 số tự nhiên liên tiếp 1, 2, 3 … 625, chọn ra 311 số sao cho không có hai số nào có tổng bằng 625. Chứng minh rằng trong 311 số được chọn, bao giờ cũng có ít nhất một số chính phương.
Đề thi chọn HSG Toán 9 THCS năm 2018 - 2019 sở GD và ĐT Thái Bình
Đề thi chọn HSG Toán 9 THCS năm 2018 – 2019 sở GD và ĐT Thái Bình gồm 1 trang với 7 bài toán tự luận, thời gian làm bài 150 phút (không kể thời gian giao đề), đề nhằm tuyển chọn các em học sinh giỏi Toán 9 khối THCS để thành lập đội tuyển tham dự kỳ thi học sinh giỏi Toán 9 cấp Quốc gia, đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi chọn HSG Toán 9 THCS năm 2018 – 2019 sở GD và ĐT Thái Bình : + Cho tam giác ABC vuông tại A, đường cao AH, gọi I, J, K lần lượt là tâm các đường tròn nội tiếp các tam giác ABC, ABH, ACH. Gọi giao điểm của các đường thẳng AJ, AK với cạnh BC lần lượt là E và F. a. Chứng minh: I là tâm đường tròn ngoại tiếp tam giác AEF. b. Chứng minh: đường tròn ngoại tiếp tam giác IJK và đường tròn nội tiếp tam giác ABC có bán kính bằng nhau. + Tìm tất cả các bộ số nguyên dương (x;y;z) sao cho (x + y√2019)(y + z√2019) là số hữu tỉ và x^2 + y^2 + z^2 là số nguyên tố. [ads] + Cho tam giác ABC có ba góc nhọn, vẽ các đường cao BE và AD. Gọi H là trực tâm và G là trọng tâm tam giác ABC. a. Chứng minh: nếu HG // BC thì tanB.tanC = 3. b. Chứng minh: tanA.tanB.tanC = tanA + tanB + tanC.
Đề thi HSG Toán 9 năm 2018 - 2019 phòng GDĐT thành phố Thái Nguyên
Đề thi HSG Toán 9 năm 2018 – 2019 phòng GD&ĐT thành phố Thái Nguyên gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút.