Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương pháp tọa độ hóa bài toán hình không gian - Trần Duy Thúc

Tài liệu gồm 24 trang giới thiệu phương pháp tọa độ hóa bài toán hình không gian và các ví dụ minh họa có lời giải chi tiết. Ưu điểm của phương pháp: Khi ta chọn được tọa độ các điểm thì chỉ cần áp dụng các kiến thức hình giải tích như khoảng cách, góc, chứng minh vuông góc. Tuy nhiên, với một số em học sinh thì việc tính được tọa độ là vấn đề? Về nguyên tắc thì em có thể chọn gốc tọa độ nằm bất cứ chổ nào, nhưng chọn chổ nào thì việc tính tọa độ là thuận lợi nhất? Sai lầm của không ít người dẫn đến việc tính tọa độ các điểm phức tạp là cứ thấy chân đường cao của hình chóp là chọn làm gốc tọa độ. Trong một số trường hợp em chọn như vậy sẽ dẫn đến việc tính tọa độ khó khăn và dễ bị chán nản. Để thuận lợi cho việc tính tọa độ em nhớ nguyên tắc sau đây: [ads] + Vẽ hình thực của đa giác đáy ra bên cạnh. + Ưu tiên chọn gốc tọa độ là góc vuông của đa giác đáy chứ không phải là ưu tiên chân đường cao. Tất nhiên nếu chân đường cao mà trùng gốc vuông ở đáy thì ta chọn gốc tọa ngay điểm đó luôn là tốt. + Nhìn vào hình thực này để tính tọa độ các điểm trong mặt phẳng đáy trước. Sau đó tính các điểm phát sinh và đỉnh. + Cứ quan tâm vào việc chọn trục Ox Oy ở đáy, sau đó gắn trục Oz vào là xong.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề phương pháp tọa độ trong không gian - Nguyễn Tăng Vũ
Tài liệu gồm 18 trang, được biên soạn bởi thầy giáo Nguyễn Tăng Vũ (phát hành ngày 11 tháng 04 năm 2020), trình bày tóm tắt lý thuyết, một số ví dụ minh họa và tuyển chọn bài tập các chuyên đề trong chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian; tài liệu giúp học sinh học tốt chương trình Toán 12 và ôn thi tốt nghiệp THPT, tuyển sinh vào Đại học – Cao đẳng. Khái quát nội dung tài liệu chuyên đề phương pháp tọa độ trong không gian – Nguyễn Tăng Vũ: Chủ đề 1 . Phương trình tổng quát của đường thẳng. 1. Phương trình tổng quát của đường thẳng. 2. Vị trí tương đối của hai đường thẳng. 3. Bài tập. Chủ đề 2 . Phương trình tham số của đường thẳng. 1. Lý thuyết. 2. Ví dụ. 3. Bài tập. Chủ đề 3 . khoảng cách – góc. 1. Khoảng cách từ một điểm đến đường thẳng. 2. Góc giữa hai đường thẳng. 3. Bài tập. [ads] Chủ đề 4 . Phương trình đường tròn. 1. Phương trình đường tròn. 2. Phương trình tiếp tuyến. 3. Bài tập. Chủ đề 5 . Phương trình chính tắc của elip. 1. Tóm tắt lý thuyết. 2. Bài tập. Chủ đề 6 . Bài tập tổng hợp. 1. Bài tập về tam giác – tứ giác. 2. Bài tập đường tròn. 3. Bài tập tổng hợp.
Tổng ôn tập TN THPT 2020 môn Toán Phương trình đường thẳng
Tài liệu gồm 45 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề phương trình đường thẳng; có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Phương trình đường thẳng: Vấn đề 1. Xác định các yếu tố cơ bản của đường thẳng. Vấn đề 2. Viết phương trình đường thẳng. Vấn đề 3. Khoảng cách và góc. Vấn đề 4. Vị trí tương đối.
Tổng ôn tập TN THPT 2020 môn Toán Phương trình mặt phẳng
Tài liệu gồm 35 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề phương trình mặt phẳng; có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Phương trình mặt phẳng: Vấn đề 1. Xác định yếu tố cơ bản của mặt phẳng. Vấn đề 2. Khoảng cách từ điểm đến mặt phẳng, từ mặt phẳng đến mặt phẳng. Vấn đề 3. Góc của hai mặt phẳng. Vấn đề 4. Viết phương trình mặt phẳng.
Tổng ôn tập TN THPT 2020 môn Toán Hệ trục tọa độ trong không gian
Tài liệu gồm 31 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề hệ trục tọa độ trong không gian; có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Hệ trục tọa độ trong không gian: Vấn đề 1. Hệ trục tọa độ trong không gian. Vấn đề 2. Phương trình mặt cầu. + Bài toán 1. Xác định tâm và bán kính. + Bài toán 2. Viết phương trình mặt cầu.