Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng và giải chi tiết 99 câu trắc nghiệm chuyên đề lượng giác - Nguyễn Nhanh Tiến

Tài liêu gồm 24 trang phân dạng và giải chi tiết 99 bài toán trắc nghiệm chọn lọc chủ đề hàm số lượng giác và phương trình lượng giác chương trình Đại số và Giải tích 11. Các dạng toán trong tài liệu gồm có: 1. Tập xác định của hàm số lượng giác • y = f(x)/g(x) có nghĩa khi và chỉ khi g(x) ≠ 0 • y = √f(x) có nghĩa khi và chỉ khi f(x) ≥ 0 • y = f(x)/√g(x) có nghĩa khi và chỉ khi g(x) > 0 2. GTLN và GTNN Của Hàm Số Lượng Giác • −1 ≤ sinx ≤ 1; 0 ≤ (sinx)^2 ≤ 1 • −1 ≤ cos x ≤ 1; 0 ≤ (cosx)^2 ≤ 1 • |tanx+cot x| ≥ 2 • Hàm số dạng y = a(sinx)^2 + bsinx + c (tương tự cosx, tanx …) tìm max min theo hàm bậc 2 (lập bảng biến thiên) • Dùng phương trình asinx + bcosx = c có nghiệm x ∈ R khi và chỉ khi a^2 + b^2 ≥ c^2 • Với hàm số y = asinx + bcosx ta có kết quả: ymax = √(a^2 + b^2), ymin = −√(a^2 + b^2) • Hàm số có dạng: y = (a1.sinx + b1.cosx + c1)/(a2.sinx + b2.cos x + c2) ta tìm tập xác định. Đưa về phương trình dạng: asinx + bcosx = c [ads] 3. Tính chẵn lẻ Của Hàm Số Lượng Giác Để xác định tính chẵn lẻ của hàm số lượng giác ta thực hiện theo sau: + Bước 1: Tìm tập xác định D của hàm số, khi đó: • Nếu D là tập đối xứng (Tức ∀x ∈ D ⇒ −x ∈ D), ta thực hiện tiếp bước 2 • Nếu D không là tập đối xứng (Tức ∃x ∈ D mà −x ∈/ D), ta kết luận hàm số không chẵn không lẻ + Bước 2: Xác định f(−x) khi đó: • Nếu f(−x) = f(x) kết luận là hàm số chẵn • Nếu f(−x) = −f(x) kết luận là hàm số lẻ • Ngoài ra kết luận là hàm số không chẵn cũng không lẻ 4. Tính Tuần Hoàn Của Hàm Số Lượng Giác • Hàm số y = sin(ax + b) và y = cos(ax + b) với a ≠ 0 tuần hoàn với chu kì: 2π/|a| • Hàm số y = tan(ax + b) và y = cot(ax + b) với a 6= 0 tuần hoàn với chu kì: π/|a| • Hàm số f(x), g(x) tuần hoàn trên tập D có các chu kì lần lượt a và b với a, b ∈ Q. Khi đó F(x) = f(x) + g(x), G(x) = f(x)g(x) cũng tuần hoàn trên D • Hàm số F(x) = m. f(x) + n.g(x) tuần hoàn với chu kì T là BCNN của a,b 5. Phương Trình Lượng Giác Cơ Bản u, v là các biểu thức của x, x là số đo của góc lượng giác: • sinu = sinv ⇔ u = v + 2kπ hoặc x = π − v + k2π • cosu = cos v ⇔ u = ±v + k2π • tanu = tanv ⇔ u = v + kπ • cotu = cot v ⇔ u = v + kπ• Muốn tìm số điểm (vị trí) biểu diễn của x lên đường tròn lượng giác thì ta đưa về dạng x = α +k2π/n. Kết luận số điểm là n, với k, l ∈ Z

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hàm số lượng giác và phương trình lượng giác - Nguyễn Bảo Vương
Chuyên đề hàm số lượng giác và phương trình lượng giác 2018 của thầy Nguyễn Bảo Vương gồm 58 trang, với tóm tắt lý thuyết, phân dạng, phương pháp giải, bài tập trắc nghiệm có đáp án và các thủ thuật sử dụng máy tính Casio trong giải Toán lượng giác lớp 11. Nội dung tài liệu: Bài 1. HÀM SỐ LƯỢNG GIÁC + Dạng toán 1. Tìm tập xác định của hàm số lượng giác + Dạng toán 2. Xác định tính chẵn, lẽ của của hàm số lượng giác + Dạng toán 3. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số lượng giác + Dạng toán 4. Tìm chu kỳ của hàm số lượng giác + Dạng toán 5. Xác định của hàm số lượng giác có đồ thị cho trước Bài 2. PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN [ads] Bài 3. PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP + Dạng toán 1. Phương trình lượng giác thường gặp đối với sinx và cosx + Dạng toán 2. Phương trình bậc hai đối với một hàm số lượng giác + Dạng toán 3. Phương trình thuần nhất (đẳng cấp) đối với sinx và cosx + Dạng toán 4. Phương trình đối xứng đối với sinx và cosx + Dạng toán 5. Phương trình đối xứng đối với tanx và cotx Bài tập trắc nghiệm ôn tập
Hướng dẫn giải các dạng toán hàm số lượng giác - Lê Đức Thiệu
Tài liệu gồm 44 trang tuyển tập các dạng toán, phương pháp giải và bài tập chủ đề hàm số lượng giác + 4 cấp độ Nhận biết – Thông hiểu – Vận dụng – Vận dụng cao trong từng vấn đề + Bao phủ các dạng bài có thể xuất hiện trong các bài kiểm tra, các đề thi + Đa dạng cách hỏi (khó sử dụng casio để thử trong các bài toán hay & khó) + Có kết hợp sử dụng Casio giải nhanh
Chuyên đề hàm số lượng giác và phương trình lượng giác - Võ Anh Dũng
I. CÁC HÀM SỐ LƯỢNG GIÁC + Dạng 1: Tìm tập xác định của hàm số + Dạng 2: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác + Dạng 3: Tìm chu kỳ của hàm số lượng giác + Dạng 4: Xét tính đồng biến, nghịch biến của hàm số lượng giác II. PHƯƠNG TRÌNH LƯỢNG GIÁC [ads] 1. Phương trình lượng giác cơ bản 2. Phương trình bậc hai đối với một hàm số lượng giác 3. Phương trình bậc nhất đối với sinx và cosx 4. Phương trình dẳng cấp bậc hai 5. Phương trình đối xứng III. BÀI TẬP TRẮC NGHIỆM
Bài thơ, bài vè, mẹo học nhanh công thức lượng giác
Bộ sưu tập một số mẹo học nhanh công thức Lượng Giác bằng cách sử dụng nghệ thuật thơ dân gian. Mặc dù các bài thơ không bao giờ là cách học công thức hiệu quả nhất, song những vần nhịp và sắc thái dân gian của nó cũng là một phương pháp ghi nhớ đáng để nghiên cứu và phát triển. 1. Định nghĩa giá trị lượng giác 2. Giá trị LG thông dụng 3. Tính chất 3.1. Cung liên kết 3.2. Dấu [ads] 4. Công thức LG 4.1. Công thức cộng 4.2. Công thức biến tích thành tổng 4.3. Công thức biến tổng thành tích 4.4. Công thức nhân ba 4.5. Đẳng thức LG trong tam giác 4.6. Bốn công thức tổng quát hữu dụng