Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán 12 ôn thi THPTQG năm 2018 - 2019 trường chuyên Vĩnh Phúc lần 3

Vừa qua, trường THPT chuyên Vĩnh Phúc đã tiếp tục tổ chức kỳ thi khảo sát chất lượng các môn thi THPT Quốc gia năm học 2018 – 2019, đây đã là lần thứ 3 trường THPT chuyên Vĩnh Phúc tổ chức kỳ thi này, mục đích nhằm giúp học sinh được rèn luyện, thử sức thường xuyên để củng cố và nâng cao kiến thức trước khi bước vào kỳ thi chính thức THPT Quốc gia năm học 2018 – 2019 do Bộ Giáo dục và Đào tạo tổ chức. xin giới thiệu đến thầy, cô và các em học sinh khối 12 nội dung đề KSCL Toán 12 ôn thi THPTQG năm 2018 – 2019 trường chuyên Vĩnh Phúc lần 3, đề bám sát cấu trúc đề minh họa môn Toán năm 2019 của Bộ Giáo dục và Đào tạo với 50 câu trắc nghiệm khách quan, thời gian làm bài thi môn Toán là 90 phút, đề thi có đáp án và lời giải chi tiết. [ads] Trích dẫn đề KSCL Toán 12 ôn thi THPTQG năm 2018 – 2019 trường chuyên Vĩnh Phúc lần 3 : + Cho hình trụ có đáy là hai đường tròn tâm O và O’, bán kính đáy bằng chiều cao và bằng 2a. Trên đường tròn đáy có tâm O lấy điểm A, trên đường tròn tâm O’ lấy điểm B. Đặt α là góc giữa AB và đáy. Tinh tanα khi thể tích khối tứ diện OO’AB đạt giá trị lớn nhất. + Trong không gian Oxyz, lấy điểm C trên tia Oz sao cho OC = 1. Trên hai tia Ox, Oy lần lượt lấy hai điểm A, B thay đổi sao cho OA + OB = OC. Tìm giá trị nhỏ nhất của bán kính mặt cầu ngoại tiếp tứ diện O.ABC? + Cho hàm số y = f(x) có đạo hàm trên R và đồ thị hàm số y = f'(x) trên R như hình vẽ. Mệnh đề nào sau đây là đúng? A. Hàm số y = f(x) có 1 điểm cực tiểu và không có cực đại. B. Hàm số y = f(x) có 1 điểm cực đại và 2 điểm cực tiểu. C. Hàm số y = f(x) có 1 điểm cực đại và không có cực tiểu. D. Hàm số y = f(x) có 1 điểm cực đại và 1 điểm cực tiểu.

Nguồn: toanmath.com

Đọc Sách

Đề KSCL Toán thi tốt nghiệp THPT 2024 trường THPT Hàm Rồng - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán thi tốt nghiệp THPT năm học 2023 – 2024 trường THPT Hàm Rồng, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 31 tháng 03 năm 2024; đề thi có đáp án trắc nghiệm mã đề 101 102 103 104 105 106 107 108 và lời giải chi tiết các bài toán vận dụng – vận dụng cao. Trích dẫn Đề KSCL Toán thi tốt nghiệp THPT 2024 trường THPT Hàm Rồng – Thanh Hóa : + Để dự báo dân số của một quốc gia, người ta sử dụng công thức n r S Ae trong đó A là dân số của năm lấy làm mốc tính, S là dân số sau n năm, r là tỉ lệ tăng dân số hàng năm. Năm 2017, dân số Việt nam là 93671600 người (Tổng cục Thống kê, Niên giám thống kê 2017, Nhà xuất bản Thống kê, Tr 79). Giả sử tỉ lệ tăng dân số hàng năm không đổi là 0,81%, dự báo dân số Việt nam năm 2035 là bao nhiêu người (kết quả làm tròn đến chữ số hàng trăm)? + Nhà trường dự định làm một vườn hoa dạng elip được chia ra làm bốn phần bởi hai đường parabol có chung đỉnh, đối xứng với nhau qua trục của elip như hình vẽ bên dưới. Biết độ dài trục lớn, trục nhỏ của elip lần lượt là 8 m và 4 m 1 F F2 là hai tiêu điểm của elip. Phần A, B dùng để trồng hoa, phần C, D dùng để trồng cỏ. Kinh phí để trồng mỗi mét vuông hoa và cỏ lần lượt là 250000 đ và 150000 đ. Tính tổng tiền để hoàn thành vườn hoa trên (làm tròn đến hàng nghìn). + Từ một chiếc đĩa tròn bằng thép có bán kính R m 6 một người thợ làm cái phễu bằng cách cắt đi một hình quạt của chiếc đĩa này và ghép phần còn lại thành hình nón. Cung tròn của hình quạt bị cắt đi phải bằng bao nhiêu độ để hình nón tạo thành có thể tích lớn nhất?
Đề KSCL lần 1 học kỳ 2 Toán 12 năm 2023 - 2024 trường THPT Bình Giang - Hải Dương
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng lần 1 học kỳ 2 môn Toán 12 năm học 2023 – 2024 trường THPT Bình Giang, tỉnh Hải Dương; đề thi có đáp án trắc nghiệm mã đề 121 – 122 – 123 – 124. Trích dẫn Đề KSCL lần 1 học kỳ 2 Toán 12 năm 2023 – 2024 trường THPT Bình Giang – Hải Dương : + Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và D AB AD a CD a 2. Hình chiếu của đỉnh S lên mặt (ABCD) trùng với trung điểm của BD. Biết thể tích khối chóp S ABCD bằng 3 2 2 a. Khoảng cách từ điểm A đến mặt phẳng (SBC) bằng? + Cho hàm số 4 2 y f x ax bx c có đồ thị (C). Biết f 1 0. Tiếp tuyến d tại điểm có hoành độ x = −1 của (C) cắt (C) tại 2 điểm có hoành độ lần lượt là 0 và 2. Gọi 1 2 S S là diện tích hình phẳng. Tính 2 S biết 1 401 2022. + Một tổ có 10 học sinh (6 nam và 4 nữ). Chọn ngẫu nhiên 2 học sinh, tính xác suất sao cho 2 học sinh được chọn đều là nữ?
Đề KSCL lần 1 Toán 12 năm 2023 - 2024 trường THPT Triệu Sơn 4 - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng lần 1 môn Toán 12 năm học 2023 – 2024 trường THPT Triệu Sơn 4, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 28 tháng 01 năm 2024; đề thi có đáp án và lời giải chi tiết các bài toán vận dụng cao. Trích dẫn Đề KSCL lần 1 Toán 12 năm 2023 – 2024 trường THPT Triệu Sơn 4 – Thanh Hóa : + Trong kỳ thi THPT Quốc Gia, mỗi lớp thi gồm 24 thí sinh được sắp xếp vào 24 bàn khác nhau. Bạn Nam là một thí sinh dự thi, bạn đăng ký 4 môn thi và cả 4 lần thi đều thi tại một phòng duy nhất. Giả sử giám thị xếp thí sinh vào vị trí một cách ngẫu nhiên, tính xác xuất để trong 4 lần thi thì bạn Nam có đúng 2 lần ngồi cùng vào một vị trí. + Anh An mới đi làm, hưởng lương 8 triệu đồng một tháng và sẻ được nhận lương vào cuối tháng làm việc. An kí hợp đồng với ngân hàng trích tự động 1 10 tiền lương của mình mỗi tháng để gửi vào tài khoản tiết kiệm, lãi suất 0,45%/tháng theo thể thức lãi kép. Kể từ tháng thứ 7, anh An được tăng lương lên mức 8 triệu 500 nghìn đồng mỗi tháng. Sau một năm đi làm, tài khoản tiết kiệm của anh An có bao nhiêu tiền ( Đơn vị: triệu đồng, kết quả lấy đến 3 chữ số sau dấu phẩy). + Trong không gian cho hai đường thẳng chéo nhau d và ∆ vuông góc với nhau và nhận AB = a làm đoạn vuông góc chung (A d B ∆). Trên d lấy điểm M, trên ∆ lấy điểm N sao cho AM a BN a 24. Gọi I là tâm mặt cầu ngoại tiếp tứ diện ABMN. Khoảng cách giữa hai đường thẳng AM và BI là?
Đề KSCL Toán lần 1 thi TN 2024 trường THPT chuyên ĐH Vinh - Nghệ An
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng môn Toán lần 1 theo định hướng thi tốt nghiệp THPT năm 2024 trường THPT chuyên Đại học Vinh, tỉnh Nghệ An (mã đề 132).