Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lần 2 Toán 10 năm 2023 - 2024 trường THPT chuyên Hùng Vương - Phú Thọ

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề khảo sát chất lượng lần 2 môn Toán 10 năm học 2023 – 2024 trường THPT chuyên Hùng Vương, tỉnh Phú Thọ. Đề thi được biên soạn theo định dạng trắc nghiệm mới nhất, với nội dung gồm 03 phần: Câu trắc nghiệm nhiều phương án lựa chọn; Câu trắc nghiệm đúng sai; Câu trắc nghiệm trả lời ngắn. Kỳ thi được diễn ra vào ngày 01 tháng 03 năm 2024. Đề thi có đáp án mã đề 101 – 102 – 103 – 104. Trích dẫn Đề khảo sát lần 2 Toán 10 năm 2023 – 2024 trường THPT chuyên Hùng Vương – Phú Thọ : + Một công ty, trong một tháng cần sản xuất ít nhất 12 viên kim cương to và 9 viên kim cương nhỏ. Từ một tấn Cacbon loại 1 (giá 100 triệu đồng) có thể chiết xuất được 5 viên kim cương to và 3 viên kim cương nhỏ, từ 1 tấn Cacbon loại 2 (giá 40 triệu đồng) có thể chiết xuất được 2 viên kim cương to và 3 viên kim cương nhỏ. Mỗi viên kim cương to có giá 20 triệu đồng, mỗi viên kim cương nhỏ có giá 10 triệu đồng. Hỏi trong một tháng công ty này lãi được nhiều nhất là bao nhiêu tiền (đơn vị: triệu đồng)? Biết rằng mỗi tháng chỉ có thể sử dụng tối đa 4 tấn Cacbon mỗi loại và tổng số tiền mua Cacbon không vượt quá 500 triệu đồng. + An và Bình cùng xuất phát từ điểm P, đi theo hai hướng khác nhau và tạo với nhau một góc 0 40 để đến đích là điểm D. Biết rằng họ dừng lại ăn trưa lần lượt tại A và B như hình vẽ. Hỏi Bình phải đi bao nhiêu km nữa để đến được đích? (Làm tròn kết quả đến hàng phần chục). + Một cửa hàng kinh doanh giày và giá để nhập một đôi giày là 40 nghìn đồng. Theo nghiên cứu của bộ phận kinh doanh thì nếu cửa hàng bán mỗi đôi giày với giá x nghìn đồng thì mỗi tháng sẽ bán được 120 − x đôi giày. Hỏi cửa hàng bán với giá bao nhiêu thì lãi nhiều nhất? (đơn vị nghìn đồng).

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra định kỳ học kỳ 1 môn Toán 10 trường THPT Võ Thành Trinh - An Giang
Đề kiểm tra định kỳ học kỳ 1 môn Toán 10 trường THPT Võ Thành Trinh – An Giang gồm 4 mã đề, mỗi đề gồm 2 trang với 16 câu trắc nghiệm và 2 câu tự luận, thời gian làm bài 45 phút, tất cả các mã đề đều có đáp án . Trích dẫn đề thi : + Cho hai tập hợp A = {1; 2; 3; 4; 5} và B = {2; 4; 6; 8}. Xác định tập hợp A ∪ B. A. A ∪ B = {1; 3; 5} B. A ∪ B = {1; 2; 3; 4; 5; 6; 7; 8} C. A ∪ B = {1; 2; 3; 4; 5; 6; 8} D. A ∪ B = {2; 4} [ads] + Phủ định của mệnh đề “∀x ∈ R : x^2 + x + 2 > 0” là mệnh đề nào sau đây? A. ∃x ∈ R : x^2 + x + 2 < 0 B. ∀x ∈ R : x^2 + x + 2 < 0 C. ∃x ∈ R : x^2 + x + 2 ≤ 0 D. ∀x ∈ R : x^2 + x + 2 ≤ 0 + Hàm số nào trong các hàm số sau đây có đồ thị như hình bên? A. y = x − 3 B. y = 2x − 3 C. y = 4x − 6 D. y = −4x + 6
Đề kiểm tra định kỳ tháng 9 năm học 2017 - 2018 môn Toán 10 trường THCS - THPT Khai Minh - TP. HCM
Đề kiểm tra định kỳ tháng 9 năm học 2017 – 2018 môn Toán 10 trường THCS – THPT Khai Minh – TP. HCM gồm 8 bài toán tự luận, có lời giải chi tiết và thang điểm . Trích dẫn đề thi : + Giả sử ABC là một tam giác đã cho. Lập mệnh đề P ⇒ Q và Q ⇒ P rồi xét tính đúng sai của chúng, với: P: “Góc A bằng 90 độ” và Q: “BC^2 = AB^2 + AC^2” + Cho các tập hợp: A = [-5; 11] và B = (2; 18) Xác định các tập hợp: A ∪ B; A ∩ B; A \ B; B \ A và biểu diễn chúng lên trục số? + Phát biểu mệnh đề phủ định của mỗi mệnh đề sau và giải thích mệnh đề phủ định đó đúng hay sai? a) ∃x ∈ R: x^2 = -5 b) ∀x ∈ R: x^2 + 2x + 8 = 0 [ads]
Đề kiểm tra định kỳ lần 1 môn Toán lớp 10 trường THPT Lê Lợi - Hà Nội
Đề kiểm tra định kỳ lần 1 môn Toán lớp 10 trường THPT Lê Lợi – Hà Nội gồm 15 câu trắc nghiệm và 3 câu tự luận. Trích dẫn đề kiểm tra : + Một chiếc cổng có dạng là một đường Parabol như hình vẽ, biết cổng cao 10m, chiều rộng BC = 4m. Chọn hệ trục tọa độ Oxy như hình vẽ. a) Tìm tọa độ các điểm A, B, C b) Tìm phương trình của parabol trên + Một vật chuyển động với đồ thị vận tốc như hình bên. Tính vận tốc trung bình của vật trong 10 giây đầu? [ads] A. 9,2 m/s B. 7,6 m/s C. 12,8 m/s D. 10 m/s + Cho hàm số y = f(x) có đồ thị như hình bên. Hãy chỉ ra tất cả các khoảng mà hàm số f(x) nghịch biến? A. (−∞; 0) và (0; +∞) B. (-2; 0) C. (−∞; -2) và (2; +∞) D. (−∞; -2) và (0; +∞)
Đề ôn tập trắc nghiệm môn Toán lớp 10 trường THPT chuyên Lương Thế Vinh - Đồng Nai
Đề ôn tập trắc nghiệm môn Toán lớp 10 trường THPT chuyên Lương Thế Vinh – Đồng Nai gồm 4 mã đề, mỗi đề gồm 50 câu hỏi trắc nghiệm. Nội dung đề gồm 2 chương: + Mệnh đề và tập hợp + Hàm số bậc nhất và hàm số bậc hai Trong đề có một số câu hỏi bằng Tiếng Anh được trích dẫn từ các đề thi quốc tế, đề ôn tập có đáp án . Trích dẫn đề thi : + Xét hai hàm số: f(x) = x^2 + 2bx + 1 và g(x) = 2a(x + b), ở đây x là biến số và các hằng số a và b là các số thực. Với mỗi cặp hằng số a và b có thể được xem như là một điểm (a,b) trong mặt phẳng toạ độ Oab. Gọi S là tập hợp các điểm (a,b) sao cho đồ thị của các hàm số y = f(x) và y = g(x) không có điểm chung (trong mặt phẳng toạ độ Oxy). Diện tích của S bằng (hoặc gần bằng): [ads] A. 1 B. 4 C. 4π D. π + Cho parabol y = ax^2 + bx + c có đỉnh tại (4,−5) và cắt trục hoành tại hai điểm có hoành độ trái dấu. Trong các số a, b, c, số nào dương? A Chỉ b B Chỉ a C Chỉ c D Chỉ a và b + Biết rằng đồ thị hàm số y = ax^2 + bx + c cắt trục hoành tại hai điểm phân biệt A(x1;0), B(x2;0) (x1, x2 > 0) sao cho OA = AB. Hệ thức liên hệ giữa a, b, c là? A. 2b^2 = 9ac B. b^2 = 9ac C. b = 9ac D. b^2 = 9(a+ c)