Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Toàn cảnh đề thi tốt nghiệp THPT môn Toán (2017 - 2021)

Tài liệu gồm 880 trang, được tổng hợp bởi thầy giáo Nguyễn Hoàng Việt, tổng hợp và phân loại theo chuyên đề các dạng toán trong các đề thi tốt nghiệp THPT môn Toán của Bộ Giáo dục và Đào tạo từ năm học 2016 – 2017 đến năm học 2020 – 2021, có đáp án và lời giải chi tiết; tài liệu giúp học sinh tham khảo trong quá trình ôn tập chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông môn Toán. D09 – 1.9 Chứng minh bất đẳng thức (dùng nhiều phương pháp) – Mức độ 3. D02 – 5.2 Giải bất phương trình bậc hai và bài toán liên quan – Mức độ 4. D01 – 1.1 Quy tắc cộng – Mức độ 1. D01 – 2.1 Bài toán chỉ sử dụng hoán vị – Mức độ 1. D01 – 2.1 Bài toán chỉ sử dụng hoán vị – Mức độ 2. D02 – 2.2 Bài toán chỉ sử dụng chỉnh hợp – Mức độ 1. D02 – 2.2 Bài toán chỉ sử dụng chỉnh hợp – Mức độ 2. D03 – 2.3 Bài toán chỉ sử dụng tổ hợp – Mức độ 1. D02 – 3.2 Tìm hệ số, số hạng trong khai triển nhị thức Newton – Mức độ 2. D02 – 3.2 Tìm hệ số, số hạng trong khai triển nhị thức Newton – Mức độ 3. D02 – 5.2 Tính xác suất bằng định nghĩa – Mức độ 2. D02 – 5.2 Tính xác suất bằng định nghĩa – Mức độ 3. D02 – 5.2 Tính xác suất bằng định nghĩa – Mức độ 4. D03 – 5.3 Tính xác suất bằng công thức cộng – Mức độ 3. D04 – 5.4 Tính xác suất bằng công thức nhân – Mức độ 2. D00 – 3.0 Các câu hỏi chưa phân dạng – Mức độ 1. D03 – 3.3 Tìm hạng tử trong cấp số cộng – Mức độ 1. D00 – 4.0 Các câu hỏi chưa phân dạng – Mức độ 1. D03 – 4.3 Tìm hạng tử trong cấp số nhân – Mức độ 1. D02 – 1.2 Dãy số có giới hạn 0 – Mức độ 1. D03 – 1.3 Giới hạn của dãy phân thức hữu tỷ – Mức độ 1. D07 – 2.7 Dạng vô cùng chia vô cùng – Mức độ 1. D01 – 1.1 Câu hỏi lý thuyết về tính đơn điệu – Mức độ 1. D02 – 1.2 Xét tính đơn điệu của hàm số cho bởi công thức – Mức độ 1. D02 – 1.2 Xét tính đơn điệu của hàm số cho bởi công thức – Mức độ 2. D03 – 1.3 Xét tính đơn điệu dựa vào bảng biến thiên, đồ thị – Mức độ 1. D03 – 1.3 Xét tính đơn điệu dựa vào bảng biến thiên, đồ thị – Mức độ 2. D04 – 1.4 Tìm khoảng đơn điệu của hàm số hợp f(u) biết hàm số f'(x) hoặc đồ thị của f'(x) – Mức độ 2. D04 – 1.4 Tìm khoảng đơn điệu của hàm số hợp f(u) biết hàm số f'(x) hoặc đồ thị của f'(x) – Mức độ 3. D04 – 1.4 Tìm khoảng đơn điệu của hàm số hợp f(u) biết hàm số f'(x) hoặc đồ thị của f'(x) – Mức độ 4. D05 – 1.5 Tìm khoảng đơn điệu của hàm số h(x) = f(x) + g(x) biết hàm số f'(x) hoặc đồ thị của f'(x) – Mức độ 4. D06 – 1.6 Tìm tham số m để hàm số đơn điệu trên R, trên từng khoảng xác định – Mức độ 3. D07 – 1.7 Tìm m để hàm số đơn điệu trên khoảng cho trước – Mức độ 2. D07 – 1.7 Tìm m để hàm số đơn điệu trên khoảng cho trước – Mức độ 3. D07 – 1.7 Tìm m để hàm số đơn điệu trên khoảng cho trước – Mức độ 4. D08 – 1.8 Ứng dụng tính đơn điệu vào PT, BPT, HPT, BĐT – Mức độ 3. D08 – 1.8 Ứng dụng tính đơn điệu vào PT, BPT, HPT, BĐT – Mức độ 4. D02 – 2.2 Tìm cực trị của hàm số cho bởi công thức – Mức độ 1. D02 – 2.2 Tìm cực trị của hàm số cho bởi công thức – Mức độ 2. D02 – 2.2 Tìm cực trị của hàm số cho bởi công thức – Mức độ 3. D03 – 2.3 Tìm cực trị dựa vào BBT, đồ thị – Mức độ 1. D03 – 2.3 Tìm cực trị dựa vào BBT, đồ thị – Mức độ 2. D03 – 2.3 Tìm cực trị dựa vào BBT, đồ thị – Mức độ 4. D04 – 2.4 Cực trị của hs chứa dấu GTTĐ, hs cho bởi nhiều công thức – Mức độ 3. D04 – 2.4 Cực trị của hs chứa dấu GTTĐ, hs cho bởi nhiều công thức – Mức độ 4. D05 – 2.5 Tìm cực trị của hàm số f(u) biết hàm số f'(x) hoặc đồ thị f'(x) – Mức độ 1. D05 – 2.5 Tìm cực trị của hàm số f(u) biết hàm số f'(x) hoặc đồ thị f'(x) – Mức độ 2. D05 – 2.5 Tìm cực trị của hàm số f(u) biết hàm số f'(x) hoặc đồ thị f'(x) – Mức độ 3. D05 – 2.5 Tìm cực trị của hàm số f(u) biết hàm số f'(x) hoặc đồ thị f'(x) – Mức độ 4. D06 – 2.6 Tìm cực trị của hàm số h(x) = f(x) + g(x) biết hàm số f'(x) hoặc đồ thị f'(x) – Mức độ 4. D07 – 2.7 Tìm m để hàm số đạt cực trị tại 1 điểm x0 cho trước – Mức độ 2. D07 – 2.7 Tìm m để hàm số đạt cực trị tại 1 điểm x0 cho trước – Mức độ 3. D07 – 2.7 Tìm m để hàm số đạt cực trị tại 1 điểm x0 cho trước – Mức độ 4. D09 – 2.9 Tìm m để hàm số, đồ thị hàm số bậc ba có cực trị thỏa mãn điều kiện – Mức độ 3. D09 – 2.9 Tìm m để hàm số, đồ thị hàm số bậc ba có cực trị thỏa mãn điều kiện – Mức độ 4. D10 – 2.10 Tìm m để hs trùng phương có 1 hoặc 3 cực trị – Mức độ 3. D11 – 2.11 Tìm m để hàm số, đồ thị hàm số trùng phương có cực trị thỏa mãn ĐK – Mức độ 3. D14 – 2.14 Tìm m để hs chứa dấu GTTĐ có cực trị thỏa mãn đk cho trước – Mức độ 3. D14 – 2.14 Tìm m để hs chứa dấu GTTĐ có cực trị thỏa mãn đk cho trước – Mức độ 4. D15 – 2.15 Tìm m để hs khác có cực trị thỏa mãn đk cho trước – Mức độ 4. D16 – 2.16 Bài toán liên quan đến đường thẳng đi qua hai điểm cực trị của hs bậc 3 và hs bậc 2 trên bậc 1 – Mức độ 3. D02 – 3.2 GTLN, GTNN trên đoạn [a;b] – Mức độ 1. D02 – 3.2 GTLN, GTNN trên đoạn [a;b] – Mức độ 2. D03 – 3.3 GTLN, GTNN trên khoảng – Mức độ 2. D04 – 3.4 GTLN, GTNN của hàm số biết BBT, đồ thị – Mức độ 1. D04 – 3.4 GTLN, GTNN của hàm số biết BBT, đồ thị – Mức độ 3. D07 – 3.7 Ứng dụng GTNN, GTLN trong bài toán phương trình, bất phương trình, hệ phương trình – Mức độ 3. D08 – 3.8 GTLN, GTNN của hs liên quan đến đồ thị, tích phân – Mức độ 4. D09 – 3.9 Tìm m để hs có GTLN, GTNN thỏa mãn đk cho trước – Mức độ 3. D09 – 3.9 Tìm m để hs có GTLN, GTNN thỏa mãn đk cho trước – Mức độ 4. D11 – 3.11 Tìm m để hs chứa dấu GTTĐ có GTLN, GTNN thỏa mãn đk cho trước – Mức độ 3. D11 – 3.11 Tìm m để hs chứa dấu GTTĐ có GTLN, GTNN thỏa mãn đk cho trước – Mức độ 4. D12 – 3.12 GTLN, GTNN hàm nhiều biến – Mức độ 4. D13 – 3.13 Bài toán ứng dụng, tối ưu, thực tế – Mức độ 3. D01 – 4.1 Câu hỏi lý thuyết về tiệm cận – Mức độ 1. D02 – 4.2 Tìm đường tiệm cận, số đường tiệm cận của hs b1 Trên b1 – Mức độ 1. D02 – 4.2 Tìm đường tiệm cận, số đường tiệm cận của hs b1 Trên b1 – Mức độ 2. D03 – 4.3 Tìm đường tiệm cận, số đường tiệm cận của hs phân thức hữu tỷ – Mức độ 2. D03 – 4.3 Tìm đường tiệm cận, số đường tiệm cận của hs phân thức hữu tỷ – Mức độ 3. D04 – 4.4 Tìm đường tiệm cận, số đường tiệm cận của hs chứa căn – Mức độ 1. D04 – 4.4 Tìm đường tiệm cận, số đường tiệm cận của hs chứa căn – Mức độ 2. D04 – 4.4 Tìm đường tiệm cận, số đường tiệm cận của hs chứa căn – Mức độ 3. D05 – 4.5 Tìm đường tiệm cận, số đường tiệm cận của đồ thị hs biết BBT, đồ thị – Mức độ 2. D06 – 4.6 Bài toán liên quan đến đường tiệm cận – Mức độ 3. D06 – 4.6 Bài toán liên quan đến đường tiệm cận – Mức độ 4. D00 – 5.0 Các câu hỏi chưa phân dạng – Mức độ 3. D01 – 5.1 Nhận dạng hàm số thông qua đồ thị, BBT – Mức độ 1. D01 – 5.1 Nhận dạng hàm số thông qua đồ thị, BBT – Mức độ 2. D01 – 5.1 Nhận dạng hàm số thông qua đồ thị, BBT – Mức độ 3. D03 – 5.3 Các phép biến đổi đồ thị – Mức độ 3. D04 – 5.4 Tìm tọa độ giao điểm, số giao điểm của hai đồ thị không chứa tham số – Mức độ 1. D04 – 5.4 Tìm tọa độ giao điểm, số giao điểm của hai đồ thị không chứa tham số – Mức độ 2. D05 – 5.5 Tìm số nghiệm của phương trình f(x) = g(x) khi biết đồ thị, BBT của f(x) – Mức độ 1. D05 – 5.5 Tìm số nghiệm của phương trình f(x) = g(x) khi biết đồ thị, BBT của f(x) – Mức độ 2. D05 – 5.5 Tìm số nghiệm của phương trình f(x) = g(x) khi biết đồ thị, BBT của f(x) – Mức độ 3. D05 – 5.5 Tìm số nghiệm của phương trình f(x) = g(x) khi biết đồ thị, BBT của f(x) – Mức độ 4. D06 – 5.6 Tìm m để phương trình có nghiệm, có k nghiệm khi biết đồ thị BBT – Mức độ 1. D06 – 5.6 Tìm m để phương trình có nghiệm, có k nghiệm khi biết đồ thị BBT – Mức độ 4. D07 – 5.7 Tìm m để PT có nghiệm bằng PP cô lập m – Mức độ 3. D09 – 5.9 Tìm m liên quan đến tương giao của hs bậc 3 – Mức độ 3. D09 – 5.9 Tìm m liên quan đến tương giao của hs bậc 3 – Mức độ 4. D11 – 5.11 Tìm m liên quan đến tương giao của hs trùng phương – Mức độ 4. D12 – 5.12 Tìm m liên quan đến tương giao của hs khác – Mức độ 4. D18 – 5.18 Bài toán tiếp tuyến của đồ thị – Mức độ 3. D18 – 5.18 Bài toán tiếp tuyến của đồ thị – Mức độ 4. D01 – 1.1 Tính giá trị của biểu thức chứa lũy thừa – Mức độ 2. D02 – 1.2 Biến đổi, rút gọn, biểu diễn các biểu thức chứa lũy thừa – Mức độ 1. D02 – 1.2 Biến đổi, rút gọn, biểu diễn các biểu thức chứa lũy thừa – Mức độ 2. D02 – 2.2 Đạo hàm hàm số lũy thừa – Mức độ 1. D01 – 3.1 Tính giá trị biểu thức chứa lô-ga-rít – Mức độ 1. D01 – 3.1 Tính giá trị biểu thức chứa lô-ga-rít – Mức độ 2. D01 – 3.1 Tính giá trị biểu thức chứa lô-ga-rít – Mức độ 3. D02 – 3.2 Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít – Mức độ 1. D02 – 3.2 Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít – Mức độ 2. D02 – 3.2 Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít – Mức độ 3. D03 – 3.3 So sánh các biểu thức lô-ga-rít – Mức độ 1. D03 – 3.3 So sánh các biểu thức lô-ga-rít – Mức độ 2. D00 – 4.0 Các câu hỏi chưa phân dạng – Mức độ 3. D00 – 4.0 Các câu hỏi chưa phân dạng – Mức độ 4. D01 – 4.1 Tập xác định của hàm số mũ, hàm số lô-ga-rít – Mức độ 1. D01 – 4.1 Tập xác định của hàm số mũ, hàm số lô-ga-rít – Mức độ 2. D01 – 4.1 Tập xác định của hàm số mũ, hàm số lô-ga-rít – Mức độ 3. D02 – 4.2 Tính đạo hàm hàm số mũ, hàm số lô-ga-rít – Mức độ 1. D02 – 4.2 Tính đạo hàm hàm số mũ, hàm số lô-ga-rít – Mức độ 2. D04 – 4.4 Tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa hàm mũ, hàm lô-ga-rít – Mức độ 3. D04 – 4.4 Tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa hàm mũ, hàm lô-ga-rít – Mức độ 4. D06 – 4.6 Đồ thị hàm số mũ, Logarit – Mức độ 2. D07 – 4.7 Lý thuyết tổng hợp hàm số lũy thừa, mũ, lô-ga-rít – Mức độ 1. D08 – 4.8 Bài toán lãi suất – Mức độ 2. D08 – 4.8 Bài toán lãi suất – Mức độ 3. D09 – 4.9 Bài toán tăng trưởng – Mức độ 2. D09 – 4.9 Bài toán tăng trưởng – Mức độ 3. D01 – 5.1 Phương trình mũ cơ bản – Mức độ 1. D02 – 5.2 Phương pháp đưa về cùng cơ số GPT Mũ – Mức độ 1. D02 – 5.2 Phương pháp đưa về cùng cơ số GPT Mũ – Mức độ 2. D03 – 5.3 Phương pháp đặt ẩn phụ GPT Mũ – Mức độ 1. D03 – 5.3 Phương pháp đặt ẩn phụ GPT Mũ – Mức độ 2. D03 – 5.3 Phương pháp đặt ẩn phụ GPT Mũ – Mức độ 3. D05 – 5.5 Phương pháp hàm số, đánh giá GPT mũ – Mức độ 3. D05 – 5.5 Phương pháp hàm số, đánh giá GPT mũ – Mức độ 4. D06 – 5.6 Phương trình Logarit cơ bản – Mức độ 1. D06 – 5.6 Phương trình Logarit cơ bản – Mức độ 2. D07 – 5.7 Phương pháp đưa về cùng cơ số GPT Logarit – Mức độ 2. D07 – 5.7 Phương pháp đưa về cùng cơ số GPT Logarit – Mức độ 3. D07 – 5.7 Phương pháp đưa về cùng cơ số GPT Logarit – Mức độ 4. D08 – 5.8 Phương pháp đặt ẩn phụ GPT Logarit – Mức độ 3. D08 – 5.8 Phương pháp đặt ẩn phụ GPT Logarit – Mức độ 4. D10 – 5.10 Phương pháp hàm số, đánh giá GPT Logarit – Mức độ 3. D10 – 5.10 Phương pháp hàm số, đánh giá GPT Logarit – Mức độ 4. D00 – 6.0 Các câu hỏi chưa phân dạng – Mức độ 3. D00 – 6.0 Các câu hỏi chưa phân dạng – Mức độ 4. D01 – 6.1 Bất phương trình Mũ cơ bản – Mức độ 1. D02 – 6.2 Phương pháp đưa về cùng cơ số GBPT Mũ – Mức độ 2. D02 – 6.2 Phương pháp đưa về cùng cơ số GBPT Mũ – Mức độ 3. D03 – 6.3 Phương pháp đặt ẩn phụ GBPT Mũ – Mức độ 2. D03 – 6.3 Phương pháp đặt ẩn phụ GBPT Mũ – Mức độ 4. D06 – 6.6 Bất phương trình Logarit cơ bản – Mức độ 1. D06 – 6.6 Bất phương trình Logarit cơ bản – Mức độ 2. D07 – 6.7 Phương pháp đưa về cùng cơ số GBPT Logarit – Mức độ 2. D08 – 6.8 Phương pháp đặt ẩn phụ GBPT Logarit – Mức độ 2. D08 – 6.8 Phương pháp đặt ẩn phụ GBPT Logarit – Mức độ 3. D10 – 6.10 Phương pháp hàm số, đánh giá GBPT Logarit – Mức độ 3. D10 – 6.10 Phương pháp hàm số, đánh giá GBPT Logarit – Mức độ 4. D01 – 1.1 Định nghĩa, tính chất của nguyên hàm – Mức độ 1. D02 – 1.2 Nguyên hàm của hs cơ bản – Mức độ 1. D02 – 1.2 Nguyên hàm của hs cơ bản – Mức độ 2. D03 – 1.3 Nguyên hàm của hs phân thức hữu tỷ – Mức độ 1. D03 – 1.3 Nguyên hàm của hs phân thức hữu tỷ – Mức độ 2. D04 – 1.4 Tìm nguyên hàm thỏa mãn ĐK cho trước – Mức độ 2. D04 – 1.4 Tìm nguyên hàm thỏa mãn ĐK cho trước – Mức độ 3. D05 – 1.5 PP đổi biến số t = u(x) – Mức độ 2. D05 – 1.5 PP đổi biến số t = u(x) – Mức độ 3. D07 – 1.7 PP nguyên hàm từng phần – Mức độ 2. D07 – 1.7 PP nguyên hàm từng phần – Mức độ 3. D08 – 1.8 Nguyên hàm kết hợp đổi biến và từng phần – Mức độ 3. D09 – 1.9 Nguyên hàm của hàm ẩn – Mức độ 3. D10 – 1.10 Nguyên hàm của hs cho bởi nhiều công thức – Mức độ 3. D00 – 2.0 Các câu hỏi chưa phân dạng – Mức độ 3. D01 – 2.1 Định nghĩa, tính chất của tích phân – Mức độ 1. D01 – 2.1 Định nghĩa, tính chất của tích phân – Mức độ 2. D02 – 2.2 Tích phân cơ bản – Mức độ 1. D02 – 2.2 Tích phân cơ bản – Mức độ 2. D02 – 2.2 Tích phân cơ bản – Mức độ 3. D04 – 2.4 PP đổi biến t = u(x) – Mức độ 2. D04 – 2.4 PP đổi biến t = u(x) – Mức độ 3. D04 – 2.4 PP đổi biến t = u(x) – Mức độ 4. D06 – 2.6 Phương pháp tích phân từng phần – Mức độ 2. D06 – 2.6 Phương pháp tích phân từng phần – Mức độ 3. D07 – 2.7 Kết hợp đổi biến và từng phần tính tích phân – Mức độ 3. D08 – 2.8 Tích phân của hàm ẩn. Tích phân đặc biệt – Mức độ 2. D08 – 2.8 Tích phân của hàm ẩn. Tích phân đặc biệt – Mức độ 3. D08 – 2.8 Tích phân của hàm ẩn. Tích phân đặc biệt – Mức độ 4. D09 – 2.9 Tích phân bằng PP Vi Phân – Mức độ 4. D10 – 2.10 10 Tích phân hàm số hữu tỷ – Mức độ 2. D10 – 2.10 10 Tích phân hàm số hữu tỷ – Mức độ 3. D01 – 3.1 Câu hỏi lý thuyết – Mức độ 1. D01 – 3.1 Câu hỏi lý thuyết – Mức độ 2. D02 – 3.2 Diện tích hình phẳng được giới hạn bởi các đồ thị – Mức độ 1. D02 – 3.2 Diện tích hình phẳng được giới hạn bởi các đồ thị – Mức độ 2. D02 – 3.2 Diện tích hình phẳng được giới hạn bởi các đồ thị – Mức độ 3. D02 – 3.2 Diện tích hình phẳng được giới hạn bởi các đồ thị – Mức độ 4. D03 – 3.3 Thể tích giới hạn bởi các đồ thị (tròn xoay) – Mức độ 1. D03 – 3.3 Thể tích giới hạn bởi các đồ thị (tròn xoay) – Mức độ 2. D03 – 3.3 Thể tích giới hạn bởi các đồ thị (tròn xoay) – Mức độ 3. D04 – 3.4 Thể tích tính theo mặt cắt S(x) – Mức độ 2. D06 – 3.6 Bài toán thực tế sử dụng diện tích hình phẳng – Mức độ 3. D06 – 3.6 Bài toán thực tế sử dụng diện tích hình phẳng – Mức độ 4. D08 – 3.8 Ứng dụng vào bài toán chuyển động – Mức độ 2. D08 – 3.8 Ứng dụng vào bài toán chuyển động – Mức độ 3. D08 – 3.8 Ứng dụng vào bài toán chuyển động – Mức độ 4. D10 – 3.10 Ứng dụng tích phân vào bài toán đại số – Mức độ 3. D10 – 3.10 Ứng dụng tích phân vào bài toán đại số – Mức độ 4. D01 – 1.1 Câu hỏi lý thuyết về số phức – Mức độ 1. D01 – 1.1 Câu hỏi lý thuyết về số phức – Mức độ 2. D02 – 1.2 Xác định phần thực, phần ảo, mô đun, liên hợp của số phức – Mức độ 1. D02 – 1.2 Xác định phần thực, phần ảo, mô đun, liên hợp của số phức – Mức độ 2. D03 – 1.3 Biểu diễn hình học cơ bản của số phức – Mức độ 1. D02 – 2.2 Thực hiện các phép toán về số phức. – Mức độ 1. D02 – 2.2 Thực hiện các phép toán về số phức. – Mức độ 2. D03 – 2.3 Xác định các yếu tố của số phức (phần thực, ảo, mô đun, liên hợp,…) qua các phép toán – Mức độ 1. D03 – 2.3 Xác định các yếu tố của số phức (phần thực, ảo, mô đun, liên hợp,…) qua các phép toán – Mức độ 2. D03 – 2.3 Xác định các yếu tố của số phức (phần thực, ảo, mô đun, liên hợp,…) qua các phép toán – Mức độ 4. D04 – 2.4 Tìm số phức thỏa mãn đk cho trước – Mức độ 2. D04 – 2.4 Tìm số phức thỏa mãn đk cho trước – Mức độ 3. D04 – 2.4 Tìm số phức thỏa mãn đk cho trước – Mức độ 4. D01 – 3.1 Biểu diễn số phức qua các phép toán – Mức độ 1. D01 – 3.1 Biểu diễn số phức qua các phép toán – Mức độ 2. D02 – 3.2 Tập hợp điểm biểu diễn của số phức – Mức độ 1. D02 – 3.2 Tập hợp điểm biểu diễn của số phức – Mức độ 2. D02 – 3.2 Tập hợp điểm biểu diễn của số phức – Mức độ 3. D03 – 3.3 Tìm bán kính của đường tròn biểu diễn số phức – Mức độ 2. D03 – 3.3 Tìm bán kính của đường tròn biểu diễn số phức – Mức độ 3. D02 – 4.2 Giải phương trình bậc 2 với hệ số thực. Tính toán biểu thức nghiệm – Mức độ 1. D02 – 4.2 Giải phương trình bậc 2 với hệ số thực. Tính toán biểu thức nghiệm – Mức độ 2. D03 – 4.3 Định lí Viet và ứng dụng – Mức độ 1. D03 – 4.3 Định lí Viet và ứng dụng – Mức độ 2. D04 – 4.4 Phương trình quy về bậc hai – Mức độ 2. D05 – 4.5 Các bài toán biểu diễn hình học nghiệm của phương trình – Mức độ 1. D05 – 4.5 Các bài toán biểu diễn hình học nghiệm của phương trình – Mức độ 2. D06 – 4.6 Các bài toán khác về phương trình – Mức độ 3. D02 – 5.2 Phương pháp hình học – Mức độ 4. D03 – 5.3 Phương pháp đại số – Mức độ 3. D03 – 5.3 Phương pháp đại số – Mức độ 4. D03 – 2.3 Xác định góc giữa hai đường thẳng (dùng định nghĩa) – Mức độ 2. D03 – 3.3 Xác định góc giữa mặt phẳng và đường thẳng, hình chiếu – Mức độ 2. D03 – 4.3 Xác định góc giữa hai mặt phẳng – Mức độ 2. D03 – 4.3 Xác định góc giữa hai mặt phẳng – Mức độ 3. D03 – 4.3 Xác định góc giữa hai mặt phẳng – Mức độ 4. D02 – 5.2 Khoảng cách từ một điểm đến một đường thẳng – Mức độ 2. D03 – 5.3 Khoảng cách từ một điểm đến một mặt phẳng – Mức độ 2. D03 – 5.3 Khoảng cách từ một điểm đến một mặt phẳng – Mức độ 3. D04 – 5.4 Khoảng cách giữa hai đường thẳng chéo nhau – Mức độ 2. D04 – 5.4 Khoảng cách giữa hai đường thẳng chéo nhau – Mức độ 3. D01 – 1.1 Nhận diện hình đa diện, khối đa diện – Mức độ 1. D02 – 1.2 Xác định số đỉnh, cạnh, mặt bên của một khối đa diện – Mức độ 1. D02 – 1.2 Xác định số đỉnh, cạnh, mặt bên của một khối đa diện – Mức độ 2. D03 – 1.3 Phân chia, lắp ghép các khối đa diện – Mức độ 2. D05 – 1.5 Phép biến hình trong không gian – Mức độ 1. D03 – 2.3 Tính chất đối xứng – Mức độ 2. D00 – 3.0 Các câu hỏi chưa phân dạng – Mức độ 1. D01 – 3.1 Diện tích xung quanh, diện tích toàn phần của khối đa diện – Mức độ 2. D02 – 3.2 Tính thể tích các khối chóp có cạnh bên vuông góc đáy – Mức độ 2. D02 – 3.2 Tính thể tích các khối chóp có cạnh bên vuông góc đáy – Mức độ 3. D03 – 3.3 Thể tích khối chóp có mặt bên vuông góc đáy – Mức độ 2. D04 – 3.4 Thể tích khối chóp đều – Mức độ 2. D04 – 3.4 Thể tích khối chóp đều – Mức độ 3. D04 – 3.4 Thể tích khối chóp đều – Mức độ 4. D05 – 3.5 Thể tích khối chóp khác – Mức độ 1. D05 – 3.5 Thể tích khối chóp khác – Mức độ 2. D05 – 3.5 Thể tích khối chóp khác – Mức độ 4. D06 – 3.6 Tỉ số thể tích khối chóp – Mức độ 1. D06 – 3.6 Tỉ số thể tích khối chóp – Mức độ 3. D07 – 3.7 Thể tích khối lăng trụ đứng – Mức độ 1. D07 – 3.7 Thể tích khối lăng trụ đứng – Mức độ 2. D07 – 3.7 Thể tích khối lăng trụ đứng – Mức độ 3. D08 – 3.8 Thể tích khối lăng trụ đều – Mức độ 1. D08 – 3.8 Thể tích khối lăng trụ đều – Mức độ 2. D09 – 3.9 Thể tích khối lăng trụ xiên – Mức độ 1. D09 – 3.9 Thể tích khối lăng trụ xiên – Mức độ 4. D11 – 3.11 Thể tích khối đa diện – Mức độ 1. D11 – 3.11 Thể tích khối đa diện – Mức độ 3. D11 – 3.11 Thể tích khối đa diện – Mức độ 4. D12 – 3.12 Các bài toán khác (góc, khoảng cách,…) liên quan đến thể tích khối đa diện – Mức độ 3. D13 – 3.13 Bài toán cực trị – Mức độ 4. D14 – 3.14 Bài toán thực tế về khối đa diện – Mức độ 2. D14 – 3.14 Bài toán thực tế về khối đa diện – Mức độ 3. D14 – 3.14 Bài toán thực tế về khối đa diện – Mức độ 4. D01 – 1.1 Câu hỏi lý thuyết về khối nón – Mức độ 1. D02 – 1.2 Diện tích xung quanh, diện tích toàn phần, Thể tích khối nón khi biết các dữ kiện cơ bản – Mức độ 1. D02 – 1.2 Diện tích xung quanh, diện tích toàn phần, Thể tích khối nón khi biết các dữ kiện cơ bản – Mức độ 2. D02 – 1.2 Diện tích xung quanh, diện tích toàn phần, Thể tích khối nón khi biết các dữ kiện cơ bản – Mức độ 3. D03 – 1.3 Tính độ dài đường sinh, chiều cao, bán kính đáy, khoảng cách, góc, thiết diện của khối nón – Mức độ 2. D04 – 1.4 Khối nón nội tiếp, ngoại tiếp khối đa diện – Mức độ 2. D07 – 1.7 Câu hỏi lý thuyết về khối trụ – Mức độ 1. D08 – 1.8 Diện tích xung quanh, diện tích toàn phần, Thể tích khối trụ khi biết các dữ kiện cơ bản – Mức độ 1. D08 – 1.8 Diện tích xung quanh, diện tích toàn phần, Thể tích khối trụ khi biết các dữ kiện cơ bản – Mức độ 2. D08 – 1.8 Diện tích xung quanh, diện tích toàn phần, Thể tích khối trụ khi biết các dữ kiện cơ bản – Mức độ 3. D09 – 1.9 Tính độ dài đường sinh, chiều cao, bán kính đáy, khoảng cách, góc, thiết diện của khối trụ – Mức độ 1. D09 – 1.9 Tính độ dài đường sinh, chiều cao, bán kính đáy, khoảng cách, góc, thiết diện của khối trụ – Mức độ 4. D10 – 1.10 Khối trụ nội tiếp, ngoại tiếp khối đa diện – Mức độ 2. D12 – 1.12 Bài toán thực tế về khối trụ – Mức độ 1. D12 – 1.12 Bài toán thực tế về khối trụ – Mức độ 2. D12 – 1.12 Bài toán thực tế về khối trụ – Mức độ 3. D13 – 1.13 Bài toán phối hợp giữa khối nón và khối trụ – Mức độ 3. D15 – 1.15 Khối tròn xoay nội tiếp, ngoại tiếp khối đa diện – Mức độ 2. D01 – 2.1 Câu hỏi lý thuyết – Mức độ 1. D03 – 2.3 Tính diện tích mặt cầu, thể tích khối cầu khi biết bán kính – Mức độ 1. D04 – 2.4 Khối cầu ngoại tiếp khối đa diện – Mức độ 2. D04 – 2.4 Khối cầu ngoại tiếp khối đa diện – Mức độ 3. D06 – 2.6 Bài toán tổng hợp về khối nón, khối trụ, khối cầu – Mức độ 3. D07 – 2.7 Bài toán cực trị về khối cầu – Mức độ 4. D01 – 1.1 Tìm tọa độ điểm, véc-tơ liên quan đến hệ trục Oxyz – Mức độ 1. D01 – 1.1 Tìm tọa độ điểm, véc-tơ liên quan đến hệ trục Oxyz – Mức độ 2. D02 – 1.2 Tích vô hướng và ứng dụng – Mức độ 1. D02 – 1.2 Tích vô hướng và ứng dụng – Mức độ 2. D04 – 1.4 Xác định tâm, bán kính của mặt cầu – Mức độ 1. D04 – 1.4 Xác định tâm, bán kính của mặt cầu – Mức độ 4. D05 – 1.5 Vị trí tương đối của hai mặt cầu, điểm với mặt cầu – Mức độ 3. D05 – 1.5 Vị trí tương đối của hai mặt cầu, điểm với mặt cầu – Mức độ 4. D06 – 1.6 Viết phương trình mặt cầu – Mức độ 1. D06 – 1.6 Viết phương trình mặt cầu – Mức độ 2. D06 – 1.6 Viết phương trình mặt cầu – Mức độ 3. D07 – 1.7 Các bài toán cực trị – Mức độ 4. D00 – 2.0 Các câu hỏi chưa phân dạng – Mức độ 2. D00 – 2.0 Các câu hỏi chưa phân dạng – Mức độ 4. D01 – 2.1 Xác định VTPT – Mức độ 1. D02 – 2.2 Viết phương trình mặt phẳng dùng đường thẳng – Mức độ 1. D02 – 2.2 Viết phương trình mặt phẳng dùng đường thẳng – Mức độ 2. D02 – 2.2 Viết phương trình mặt phẳng dùng đường thẳng – Mức độ 3. D03 – 2.3 Vị trí tương đối giữa hai mặt phẳng – Mức độ 2. D03 – 2.3 Vị trí tương đối giữa hai mặt phẳng – Mức độ 3. D04 – 2.4 Tìm tọa độ điểm liên quan đến mặt phẳng – Mức độ 1. D05 – 2.5 Góc giữa hai mặt phẳng – Mức độ 3. D06 – 2.6 Khoảng cách từ điểm đến mặt phẳng và bài toán liên quan – Mức độ 2. D07 – 2.7 Vị trí tương đối giữa mặt cầu và mặt phẳng – Mức độ 2. D07 – 2.7 Vị trí tương đối giữa mặt cầu và mặt phẳng – Mức độ 3. D09 – 2.9 Các bài toán cực trị – Mức độ 3. D09 – 2.9 Các bài toán cực trị – Mức độ 4. D10 – 2.10 Điểm thuộc mặt phẳng – Mức độ 1. D11 – 2.11 PTMP không dùng đt – Mức độ 1. D11 – 2.11 PTMP không dùng đt – Mức độ 2. D12 – 2.12 PTMP theo đoạn chắn – Mức độ 1. D13 – 2.13 Hình chiếu của điểm lên mặt phẳng và bài toán liên quan – Mức độ 1. D13 – 2.13 Hình chiếu của điểm lên mặt phẳng và bài toán liên quan – Mức độ 2. D13 – 2.13 Hình chiếu của điểm lên mặt phẳng và bài toán liên quan – Mức độ 3. D00 – 3.0 Các câu hỏi chưa phân dạng – Mức độ 2. D00 – 3.0 Các câu hỏi chưa phân dạng – Mức độ 3. D01 – 3.1 Xác định VTCP của đường thẳng – Mức độ 1. D01 – 3.1 Xác định VTCP của đường thẳng – Mức độ 2. D02 – 3.2 Viết phương trình đường thẳng – Mức độ 1. D02 – 3.2 Viết phương trình đường thẳng – Mức độ 2. D02 – 3.2 Viết phương trình đường thẳng – Mức độ 3. D02 – 3.2 Viết phương trình đường thẳng – Mức độ 4. D03 – 3.3 Tìm tọa độ điểm liên quan đến đường thẳng – Mức độ 1. D03 – 3.3 Tìm tọa độ điểm liên quan đến đường thẳng – Mức độ 2. D03 – 3.3 Tìm tọa độ điểm liên quan đến đường thẳng – Mức độ 3. D07 – 3.7 Vị trí tương đối giữa đường thẳng và mặt phẳng – Mức độ 2. D08 – 3.8 Bài toán liên quan giữa đường thẳng – mặt phẳng – mặt cầu – Mức độ 2. D08 – 3.8 Bài toán liên quan giữa đường thẳng – mặt phẳng – mặt cầu – Mức độ 3. D08 – 3.8 Bài toán liên quan giữa đường thẳng – mặt phẳng – mặt cầu – Mức độ 4. D09 – 3.9 Các bài toán cực trị – Mức độ 3. D10 – 3.10 Điểm thuộc đường thẳng – Mức độ 1. D11 – 3.11 Phương trình đường thẳng liên quan đến góc và khoảng cách – Mức độ 3. D01 – 4.1 Bài toán HHKG – Mức độ 3. D01 – 4.1 Bài toán HHKG – Mức độ 4.

Nguồn: toanmath.com

Đọc Sách

Chinh phục vận dụng - vận dụng cao Giải tích - Phan Nhật Linh
Tài liệu gồm 526 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tuyển chọn và hướng dẫn giải các bài toán vận dụng – vận dụng cao Giải tích, gồm các chủ đề: hàm số, mũ và logarit, tích phân, số phức, tổ hợp và xác suất; tài liệu giúp các em học sinh lớp 12 rèn luyện để chinh phục mức điểm 8 – 9 – 10 trong đề thi tốt nghiệp THPT môn Toán. CHƯƠNG 1: HÀM SỐ. Tính đơn điệu của hàm số. + Bài toán 1: Tính đơn điệu của hàm hợp và hàm tổng. + Bài toán 2: Tính đơn điệu của hàm số chứa trị tuyệt đối. Cực trị của hàm số phần 01. + Bài toán 1: Cực trị của hàm hợp. + Bài toán 2: Cực trị của hàm số chứa trị tuyệt đối. Cực trị của hàm số phần 02. Giá trị lớn nhất – Giá trị nhỏ nhất của hàm số. + Bài toán 1: Tìm GTLN – GTNN của hàm hợp. + Bài toán 2: GTLN – GTNN của hàm số chứa trị tuyệt đối. Tiệm cận của đồ thị hàm số. Sự tương giao của đồ thị hàm số. + Bài toán: Xét sự tương giao và biện luận nghiệm. Tiếp tuyến của đồ thị hàm số. CHƯƠNG 2: MŨ VÀ LOGARIT. Đề vận dụng cho mũ và logarit phần 01. Đề vận dụng cho mũ và logarit phần 02. Đề vận dụng cho mũ và logarit phần 03. Đề vận dụng cao mũ và logarit phần 04. CHƯƠNG 3: TÍCH PHÂN. Đề vận dụng cao tích phân phần 01. Đề vận dụng cao tích phân phần 01. CHƯƠNG 4: SỐ PHỨC. Đề vận dụng cao Số phức phần 01. Đề vận dụng cao số phức phần 02. CHƯƠNG 5: TỔ HỢP XÁC SUẤT. Đề vận dụng cao tổ hợp xác suất.
Tài liệu luyện thi TN THPT 2022 môn Toán - Trần Thanh Hiếu (Quyển 1)
Tài liệu gồm 290 trang, được biên soạn bởi thầy giáo Trần Thanh Hiếu, tuyển tập các chuyên đề luyện thi TN THPT 2022 môn Toán. Mục lục tài liệu luyện thi TN THPT 2022 môn Toán – Trần Thanh Hiếu (Quyển 1): PHẦN 1 : GIẢI TÍCH. Chương 1 : Ứng dụng đạo hàm khảo sát và vẽ đồ thị hàm số. Bài 1 : Sự đồng biến – nghịch biến của hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tìm khoảng đơn điệu của hàm số cho bằng công thức. 2. Tìm khoảng đơn điệu của hàm số cho bằng bảng biến thiên đồ thị. 3. Tìm m đề hàm số y = ax3 + bx2 + cx + d đồng biến – nghịch biến trên R. 4. Biện luận tính đồng biến – nghịch biến của hàm số trên khoảng, đoạn cho trước là tập con của R. 5. Biện luận tính đồng biến – nghịch biến của hàm phân thức y = (ax + b)/(cx + d). 6. Đồng biến – nghịch biến của hàm hợp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 2 : Cực trị của hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tìm cực trị của hàm số cho bằng công thức. 2. Xác định cực trị hàm số cho bằng bảng biến thiên, đồ thị. 3. Tìm m đề hàm số đạt cực trị tại điểm x0. 4. Biện luận cực trị của hàm số bậc ba. 5. Biện luận cực trị của hàm số trùng phương. 6. Cực trị của hàm chứa dấu trị tuyệt đối, hàm hợp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 3 : Giá trị lớn nhất – giá trị nhỏ nhất. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Max – min của hàm số cho bằng công thức. 2. Max – min của hàm số cho bằng bảng biế thiên, đồ thị. 3. Tìm tham số m theo yêu cầu max – min. 4. Max -min của hàm hợp. 5. Bài toán ứng dụng max – min. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 4 : Đường tiệm cận của đồ thị hàm số. A. Lý thuyết cơ bản càn nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tìm tiệm cận đứng – tiệm cận ngang của hàm số hữu tỉ. 2. Đường tiệm cận cho bởi bảng biến thiên, đồ thị. 3. Tìm m theo yêu cầu về tiệm cận của bài toán. 4. Tiệm cận của hàm hợp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 5 : Đồ thị các hàm số thường gặp. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Nhận dạng đồ thị hàm số bậc ba. 2. Nhận dạng đồ thị hàm số trùng phương. 3. Nhận dạng đồ thị hàm số nhất biến. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 6 : Sự tương giao của đồ thị hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Giải, biện luận phương trình bằng bảng biến thiên đồ thị. 2. Xác định, biện luận giao điểm của đồ thị hàm số bậc ba và đường cong (đường thẳng). 3. Xác định, biện luận giao điểm của đồ thị hàm số trùng phương và đường cong (đường thẳng). 4. Xác định, biện luận giao điểm của đồ thị hàm số nhất biến và đường cong (đường thẳng). 5. Ứng dụng đồ thị biện luận nghiệm bất phương trình. 6. Tương giao hàm hợp, hàm chứa dấu trị tuyệt đối. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 7 : Phương trình tiếp tuyến của đồ thị hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Phương trình tiếp tuyến biết x0 hoặc điểm M(x0;y0). 2. Phương trình tiếp tuyết biết tung độ y0. 3. Phương trình tiếp tuyến biết hệ số góc k. 4. Phương trình tiếp tuyến đi qua điểm A(x;y) không thuộc đồ thị hàm số. C. Phiếu học tập. Phiếu học tập số 1. Đề ôn tập cuối chương. Đề số 01. Đề số 02. Chương 2 : Hàm số lũy thừa – hàm số mũ – hàm số logarit. Bài 1 : Lũy thừa. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tính giá trị biểu thức. 2. Rút gọn biểu thức. 3. So sánh lũy thừa. C. Phiếu học tập. Phiếu học tập số 1. Bài 2 : Hàm số lũy thừa. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tập xác định của hàm số lũy thừa. 2. Đạo hàm của hàm số lũy thừa. 3. Nhận dạng đồ thị hàm số lũy thừa. C. Phiếu học tập. Phiếu học tập số 1. Bài 3 : Logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tính giá trị, rút gọn biểu thức logarit. 2. So sánh logarit. 3. Phân tích, biểu diễn logarit theo các logarit đã biết. 4. Biến đổi logarit tổng hợp. C. Phiếu học tập. Phiếu học tập số 1. Bài 4 : Hàm số mũ – hàm số logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tập xác định hàm số mũ – logarit. 2. Đạo hàm hàm số mũ – logarit. 3. Nhận dạng đồ thị hàm số mũ – logarit. C. Phiếu học tập. Phiếu học tập số 1. Bài 5 : Phương trình mũ – Phương trình logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Phương trình mũ -logarit cơ bản. 2. Phương trình bậc hai, quy về bậc hai mũ – logarit. 3. Phương trình mũ – logarit biến đổi tổng hợp. 4. Phương trình mũ – logarit giải bằng phương pháp hàm số. 5. Phương trình mũ – logarit có tham số m. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 6 : Bất phương trình mũ – bất phương trình logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Bất phương trình mũ – logarit cơ bản. 2. Bất phương trình bậc hai, quy về bậc hai mũ – logarit. 3. Bất phương trình mũ – logarit biến đổi tổng hợp. 4. Bất phương trình mũ – logarit giải bằng phương pháp hàm số. 5. Bất phương trình mũ – logarit có tham số m. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 7 : Ứng dụng và bài toán Max – Min. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Bài toán lãi suất – tăng trưởng. 2. Max – min, bài toán tổng hợp nhiều biến. C. Phiếu học tập. Phiếu học tạp số 1. Đề ôn tập cuối chương. Đề số 01. Đề số 02. PHẦN 2 : HÌNH HỌC. Chương 1 : Khối đa diện. Bài 1 : Khái niệm về khối đa diện. A. Lý thyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Nhận dạng hình đa diện. 2. Số cạnh, số mặt, số đỉnh của hình đa diện. 3. Phân chia, lắp ghép khối đa diện. C. Phiếu học tập. Phiếu học tập số 1. Bài 2 : Khối đa diện lồi và khối đa diện đều. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Nhận dạng khối đa diện lồi – đa diện đều. 2. Mặt phẳng đối xứng của khối đa diện. C. Phiếu học tập. Phiếu học tập số 1. Bài 3 : Thể tích khối chóp. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Khối chóp có cạnh bên vuông góc với mặt đáy. 2. Khối chóp có mặt bên vuông góc với mặt đáy. 3. Khối chóp đều. 4. Góc, khoảng cách liên quan đến khối chóp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 4 : Thể tích khối lắng trụ. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Khối lăng trụ đứng tam giác. 2. Khối lăng trụ đứng tứ giác (lập phương, hình hộp chữ nhật). 3. Khối lăng trụ xiên. 4. Góc, khoảng cách liên quan đến khối lăng trụ. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Đề ôn tập cuối chương. Đề số 01. Đề số 02. Chương 2 : Mặt nón – mặt trụ – mặt cầu. Bài 1 : Mặt nón – khối nón. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Các yếu tố cơ bản của hình nón. 2. Quay tạo thành hình nón. 3. Thiết diện qua trục, góc ở đỉnh. 4. Thiết diện không qua trục. 5. Ngoại tiếp – nội tiếp của hình nón. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 2 : Mặt trụ – khối trụ. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Các yếu tố cơ bản của hình trụ. 2. Quay tạo thành hình trụ. 3. Thiết diện qua trục. 4. Thiết diện không qua trục. 5. Ngoại tiếp – nội tiếp của hình trụ. 6. Toán tổng hợp hình trụ – khối trụ. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 3 : Mặt cầu – khối cầu. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Các yếu tố cơ bản của khối cầu. 2. Ngoại tiếp hình chóp. 3. Ngoại tiếp lăng trụ đứng, lập phương, hộp chữ nhật. 4. Ngoại tiếp hình nón – hình trụ. 5. Mặt phẳng cắt mặt cầu. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Đề ôn tập cuối chương. Đề số 01. Đề số 02.
Tổng hợp công thức Toán THPT - Nguyễn Viết Hiếu
Tài liệu gồm 33 trang, được biên soạn bởi thầy giáo Nguyễn Viết Hiếu, tổng hợp công thức Toán THPT (cả ba khối 10 – 11 – 12), giúp học sinh tra cứu trong quá trình học chương trình Toán 10 – 11 – 12 và ôn thi tốt nghiệp THPT môn Toán. 1. HÀM SỐ Trang 1. 2. HÀM SỐ MŨ, HÀM SỐ LŨY THỪA, HÀM SỐ LOGARIT Trang 5. 3. NGUYÊN HÀM, TÍCH PHÂN, ỨNG DỤNG Trang 9. 4. SỐ PHỨC Trang 10. 5. THỂ TÍCH KHỐI ĐA DIỆN Trang 11. 6. KHỐI TRÒN XOAY Trang 13. 7. KHÔNG GIAN OXYZ Trang 14. 8. PHÉP BIẾN HÌNH Trang 16. 9. HÌNH HỌC KHÔNG GIAN Trang 18. 10. ĐẠI SỐ TỔ HỢP Trang 20. 11. CẤP SỐ CỘNG, CẤP SỐ NHÂN, GIỚI HẠN, ĐẠO HÀM Trang 22. 12. TẬP HỢP, HÀM SỐ, PHƯƠNG TRÌNH, BPT, THỐNG KÊ, LƯỢNG GIÁC Trang 24. 13. VECTƠ, CÁC PHÉP TOÁN VECTƠ, TÍCH VÔ HƯỚNG Trang 28. 14. HÌNH OXY Trang 28.
Phân tích, giải và xây dựng câu VD - VDC trong đề TN THPT 2021 môn Toán (đợt 1)
Tài liệu gồm 60 trang, được biên soạn bởi quý thầy, cô giáo Nhóm Giáo Viên Toán Việt Nam, phân tích, định hướng tìm lời giải và xây dựng các bài toán tương tự các câu VD – VDC trong đề thi tốt nghiệp THPT năm 2021 môn Toán (đợt 1). Giới thiệu tài liệu phân tích, giải và xây dựng câu VD – VDC trong đề TN THPT 2021 môn Toán (đợt 1): Buổi thi môn Toán kỳ thi tốt nghiệp THPT đợt 1 năm 2021 diễn ra vào chiều ngày 7/8/2021. Bài thi môn Toán gồm 24 mã đề, được lấy từ 4 mã đề gốc là: Mã đề 101, 102, 103, 104. Nội dung đề thi nằm trong chương trình THPT, chủ yếu chương trình lớp 12, trong đó 38 câu đầu ở mức độ nhận biết, thông hiểu được ra trong các mã đề nhằm kiểm tra kiến thức cơ bản của lớp 11, lớp 12; trong các mã đề từ câu 39 đến câu 45 kiểm tra kiến thức học sinh ở mức độ vận dụng, từ câu 46 đến câu 50 ở mức độ vận dụng cao đã thể hiện rõ tính phân hoá bằng cách sử dụng tổng hợp các kiến thức trong chương trình THPT. Kỳ thi tốt nghiệp THPT đợt 2 năm 2021 sẽ diễn ra trong 2 ngày 6/7/8/2021, để tạo điều kiện cho quý thầy cô cùng các em có tài liệu ôn tập trong thời gian gấp rút này Nhóm Giáo viên Toán Việt Nam xin gửi tới quý thầy cô và các em bài viết “Phân tích, định hướng tìm lời giải, xây dựng các bài tương tự các câu VD – VDC đề thi tốt nghiệp THPT đợt 1 năm 2021”. Hy vọng bài viết sẽ giúp quý thầy cô có thêm tài liệu tham khảo; các em học sinh nắm chắc các kiến thức trong chương trình THPT; tiếp cận được với các bài toán mới, hay và lạ. Đặc biệt, rèn luyện tốt kỹ năng thi trắc nghiệm môn Toán.