Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chung) năm 2023 2024 sở GD ĐT Bà Rịa Vũng Tàu

Nội dung Đề tuyển sinh môn Toán (chung) năm 2023 2024 sở GD ĐT Bà Rịa Vũng Tàu Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chung) năm 2023-2024 sở GD&ĐT Bà Rịa Vũng Tàu Đề tuyển sinh môn Toán (chung) năm 2023-2024 sở GD&ĐT Bà Rịa Vũng Tàu Xin chào quý thầy cô và các em học sinh! Đây là đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chung) năm học 2023-2024 của Sở Giáo dục và Đào tạo tỉnh Bà Rịa-Vũng Tàu. Kỳ thi sẽ diễn ra vào ngày 6/6/2023. Dưới đây là một số câu hỏi trong đề thi: 1. Cho parabol (P): y = -x² và đường thẳng (d): y = 3x - m (với m là tham số). a) Vẽ parabol (P). b) Tìm tất cả các giá trị của tham số m để đường thẳng (d) cắt (P) tại hai điểm phân biệt có hoành độ x1, x2 thỏa mãn 5(x1 + x2) = 1 - (x1x2)². 2. Ông A có một mảnh đất hình chữ nhật, chiều dài hơn chiều rộng 15m. Sau khi bán đi một phần mảnh đất đó, mảnh đất còn lại vẫn là hình chữ nhật, nhưng chiều rộng đã giảm 5m, chiều dài không đổi và diện tích là 300m². Hãy tính chiều dài và chiều rộng của mảnh đất lúc đầu. 3. Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O) (AB < AC). Các đường cao BD, CE cắt nhau tại H. a) Chứng minh tứ giác ADHE nội tiếp. b) Đường thẳng ED cắt tiếp tuyến tại C của đường tròn (O) tại K và cắt đường tròn (O) tại M, N (M nằm giữa D và K). So sánh KNC với KCM và chứng minh KC² = KM·KN. c) Kẻ đường kính AQ của đường tròn (O) cắt MN tại P. Chứng minh QM = QN. d) Gọi F, I lần lượt là giao điểm của hai tia AH, HQ với BC. Chứng minh SHDE/SABC = DE²/3BC². Hy vọng rằng đề thi sẽ giúp các em tự tin và thành công trong kỳ thi sắp tới. Chúc quý thầy cô và các em học sinh đạt kết quả cao!

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh vào lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Phú Thọ; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi tuyển sinh vào lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Phú Thọ : + Cho hệ phương trình 2 1 3 4 1 x y m x y m (m là tham số). a) Giải hệ phương trình với m 2. b) Tìm m để hệ phương trình có nghiệm duy nhất x y thỏa mãn 2 2 3 2 x y. + Cho đường tròn O đường kính AB. Trên tia đối của tia AB lấy điểm C (C không trùng với B). Kẻ tiếp tuyến CD với đường tròn O (D là tiếp điểm), tiếp tuyến tại A của đường tròn O cắt đường thẳng CD tại E. a) Chứng minh rằng tứ giác AODE nội tiếp. b) Gọi H là giao điểm của AD và OE, K là giao điểm của BE với đường tròn O (K không trùng với B). Chứng minh EHK KBA. c) Đường thẳng vuông góc với AB tại O cắt CE tại M. Chứng minh 1 EA MO EM MC. + Cho a, b, c là các số dương thỏa mãn 2 2 2 a b c 1. Tìm giá trị lớn nhất của biểu thức A a bc 1 2 1 2.
Đề thi tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Nam Định; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Nam Định : + Mảnh đất hình chữ nhật ABCD có chiều dài AB m 6, chiều rộng BC m 4. Người ta trồng hoa trên phần đất là nửa hình tròn đường kính AD và nửa đường tròn đường kính BC, phần còn lại của mảnh đất để trồng cỏ. Tính diện tích phần đất trồng cỏ (phần tô đậm trong hình vẽ bên, kết quả làm tròn đến chữ số thập phân thứ nhất). + Cho O và điểm A nằm bên ngoài đường tròn. Từ A kẻ các tiếp tuyến AB AC với đường tròn O (B C là các tiếp điểm). Kẻ đường kính BD của đường tròn O. a) Chứng minh ABOC là tứ giác nội tiếp đường tròn và BDC AOC. b) Kẻ CK vuông góc với BD tại K. Gọi I là giao điểm của AD và CK. Chứng minh rằng I là trung điểm của CK. +  Tìm tọa độ của tất cả các điểm thuộc parabol 2 y x 2 có tung độ bằng -8.
Đề thi vào 10 chuyên môn Toán (không chuyên) năm 2021 - 2022 sở GDĐT Cà Mau
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 THPT chuyên môn Toán (không chuyên) năm học 2021 – 2022 sở GD&ĐT Cà Mau; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi vào 10 chuyên môn Toán (không chuyên) năm 2021 – 2022 sở GD&ĐT Cà Mau : + Theo các chuyên gia về sức khỏe, người trưởng thành cần đi bộ từ 5000 bước mỗi ngày sẽ rất tốt cho sức khỏe. Để rèn luyện sức khỏe, anh Sơn và chị Hà đề ra mục tiêu mỗi ngày một người phải đi bộ ít nhất 6000 bước. Hai người cùng đi bộ ở công viên và thấy rằng, nếu cùng đi trong 2 phút thì anh Sơn bước nhiều hơn chị Hà 20 bước. Hai người cùng giữ nguyên tốc độ như vậy nhưng chị Hà đi trong 5 phút thì lại nhiều hơn anh Sơn đi trong 3 phút là 160 bước. Hỏi mỗi ngày anh Sơn và chị Hà cùng đi bộ trong 1 giờ thì họ đã đạt được số bươc tối thiểu mà mục tiêu đề ra chưa? (Giả sử tốc độ đi bộ hằng ngày của hai người không đổi). + Cho phương trình: 2 2 x m x m m 2 1 4 7 0 (m là tham số). a) Tìm m để phương trình đã cho có nghiệm. b) Tìm m để phương trình đã cho có hai nghiệm âm phân biệt. + Cho tam giác nhọn ABC AB AC nội tiếp đường tròn tâm O. Hai tiếp tuyến tại B và C của đường tròn O cắt nhau tại M, tia AM cắt đường tròn O tại điểm D. a) Chứng minh rằng tứ giác OBMC nội tiếp được đường tròn. b) Chứng minh 2 MB MD MA. c) Gọi E là trung điểm của đoạn thẳng AD; tia CE cắt đường tròn O tại điểm F. Chứng minh rằng: BF AM.
Đề thi vào 10 môn Toán cơ sở năm 2021 - 2022 sở GDĐT Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi vào 10 môn Toán cơ sở năm học 2021 – 2022 sở GD&ĐT Đồng Tháp; kỳ thi được diễn ra vào ngày 09 tháng 06 năm 2021. Trích dẫn đề thi vào 10 môn Toán cơ sở năm 2021 – 2022 sở GD&ĐT Đồng Tháp : + Theo kế hoạch, một tổ trong xưởng may phải may xong 8400 chiếc khẩu trang trong một thời gian quy định. Do tình hình dịch bệnh Covid-19 diễn biến phức tạp, tổ đã quyết định tăng năng suất nên mỗi ngày tổ đã may được nhiều hơn 102 chiếc khẩu trang so với số khẩu trang phải may trong một ngày theo kế hoạch. Vì vậy, trước thời gian quy định 4 ngày, tổ đã may được 6416 chiếc khẩu trang. Hỏi số khẩu trang mà tổ phải may mỗi ngày theo kế hoạch là bao nhiêu? + Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 3cm, AC = 4cm. Tính độ dài BC và đường cao AH. + Cho đường tròn (O). Từ một điểm M ở ngoài đường tròn (O), kẻ hai tiếp tuyến MA, MB với đường tròn (O) (A, B là hai tiếp điểm). a) Chứng minh MACB là tứ giác nội tiếp. b) Vẽ đường kính BK của đường tròn (O), H là điểm trên BK sao cho AH vuông góc BK. Điểm I là giao điểm của AH, MK. Chứng minh I là trung điểm của HA.