Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào lớp 10 năm 2022 - 2023 phòng GDĐT Thạch Hà - Hà Tĩnh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Thạch Hà, tỉnh Hà Tĩnh; kỳ thi được diễn ra vào ngày 28 tháng 04 năm 2022. Trích dẫn đề thi thử Toán vào lớp 10 năm 2022 – 2023 phòng GD&ĐT Thạch Hà – Hà Tĩnh : + Nhằm động viên khen thưởng các em có thành tích học sinh giỏi nhà trường tổ chức cho các em đi tham quan, ngoại khóa tại một khu du lịch với giá vé ban đầu mỗi người là 375 000 đồng. Để ghi nhận sự cố gắng của các em học sinh và giáo viên bồi dưỡng, công ty du lịch đã giảm giá vé 10% cho mỗi giáo viên và 30% cho mỗi học sinh. Tổng chi phí của chuyến đi sau khi giảm giá là 12 487 500 đồng. Tính số học sinh, số giáo viên tham gia chuyến đi biết số học sinh gấp 4 lần số giáo viên. + Cho tam giác MNP vuông tại M, đường cao MH. Biết HN = 4cm, HP = 16cm. Tính MN; MH và độ dài đường tròn ngoại tiếp tam giác MNP. + Cho đường tròn tâm O, một điểm A nằm ngoài đường tròn. Từ A kẻ đường thẳng đi qua tâm O, cắt đường tròn tại hai điểm M và N (M nằm giữa A và N). Kẻ đường thẳng thứ hai đi qua A, cắt đường tròn tại hai điểm phân biệt C, D (C nằm giữa A và D, C khác M). Đường thẳng vuông góc với AM tại A cắt đường thẳng NC tại B, đường thẳng BM cắt đường tròn tại điểm thứ hai là E. a) Chứng minh tứ giác ABCM là tứ giác nội tiếp đường tròn. b) Chứng minh DE vuông góc với AN.

Nguồn: toanmath.com

Đọc Sách

Đề Toán tuyển sinh năm 2019 2020 sở GD ĐT Bắc Ninh
Nội dung Đề Toán tuyển sinh năm 2019 2020 sở GD ĐT Bắc Ninh Bản PDF - Nội dung bài viết Đề Toán tuyển sinh năm 2019-2020 sở GD ĐT Bắc Ninh Đề Toán tuyển sinh năm 2019-2020 sở GD ĐT Bắc Ninh Sytu xin gửi đến quý thầy cô giáo cùng các em học sinh đề Toán tuyển sinh lớp 10 năm 2019-2020 sở GD&ĐT Bắc Ninh. Đây là kỳ thi nhằm tuyển chọn các em học sinh có học lực tốt để vào học tại các trường THPT trên địa bàn tỉnh Bắc Ninh. Đề thi được biên soạn theo dạng kết hợp trắc nghiệm và tự luận, với 6 câu trắc nghiệm và 4 câu tự luận. Thời gian làm bài là 120 phút. Trích đề Toán tuyển sinh lớp 10 năm 2019-2020 sở GD&ĐT Bắc Ninh: Cho đường tròn (O) và hai điểm A, B nằm trên (O) sao cho góc AOB = 90°. Điểm C nằm trên cung lớn AB sao cho AC > BC và tam giác ABC có ba góc đều nhọn. Hãy chứng minh rằng: a) Tứ giác CIHK nội tiếp một đường tròn. b) MN là đường kính của đường tròn (O). c) OC song song với DH. Cho phương trình \(x^2 - 2mx - 2m - 1 = 0\) với m là tham số. Tìm m sao cho phương trình có hai nghiệm phân biệt x1 và x2 thỏa mãn √(x1 + x2) + √(3 + x1x2) = 2m + 1. Cho hai số thực không âm a, b thỏa mãn a^2 + b^2 = 2. Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức \(M = \frac{a^3 + b^3 + 4}{ab + 1}\). Cảm ơn quý thầy cô đã quan tâm và hy vọng các em học sinh sẽ làm bài thật tốt trong kỳ thi tuyển sinh sắp tới.
Đề Toán tuyển sinh THPT năm 2019 2020 sở GD ĐT Hải Dương
Nội dung Đề Toán tuyển sinh THPT năm 2019 2020 sở GD ĐT Hải Dương Bản PDF - Nội dung bài viết Đề Toán tuyển sinh THPT năm 2019 - 2020 sở GD ĐT Hải Dương Đề Toán tuyển sinh THPT năm 2019 - 2020 sở GD ĐT Hải Dương Ngày 02 tháng 06 năm 2019, sở Giáo dục và Đào tạo tỉnh Hải Dương đã tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2019 - 2020. Mục tiêu của kỳ thi là tuyển chọn các học sinh có học lực tốt để học tại các trường THPT trên địa bàn tỉnh Hải Dương. Đề Toán tuyển sinh lớp 10 THPT năm 2019 - 2020 sở GD&ĐT Hải Dương bao gồm 5 bài toán dạng tự luận. Đề thi chỉ có 1 trang, học sinh được 120 phút để làm bài thi và đề thi có lời giải chi tiết. Một số câu hỏi trong đề Toán tuyển sinh lớp 10 THPT năm 2019 - 2020 sở GD&ĐT Hải Dương: 1. Cho hai đường thẳng (d1): y = 2x - 5 và (d2): y = 4x - m (m là tham số). Tìm tất cả các giá trị của tham số m để (d1) và (d2) cắt nhau tại một điểm trên trục hoành Ox. 2. Một xưởng may cần may xong 360 bộ quần áo trong thời gian quy định. Tuy nhiên, xưởng may hơn 4 bộ quần áo mỗi ngày so với kế hoạch, dẫn đến hoàn thành kế hoạch trước 1 ngày. Hỏi theo kế hoạch, mỗi ngày xưởng cần may bao nhiêu bộ quần áo? 3. Cho phương trình: x^2 - (2m + 1)x - 3 = 0 (m là tham số). Chứng minh rằng phương trình đã cho luôn có hai nghiệm phân biệt x1, x2 với mọi m và tìm các giá trị của m sao cho |x1| - |x2| = 5 và x1 < x2.
Đề tuyển sinh môn Toán năm 2019 2020 sở GD ĐT Tiền Giang
Nội dung Đề tuyển sinh môn Toán năm 2019 2020 sở GD ĐT Tiền Giang Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2019-2020 sở GD&ĐT Tiền Giang Đề tuyển sinh môn Toán năm 2019-2020 sở GD&ĐT Tiền Giang Ngày 05 tháng 06 năm 2019, Sở Giáo dục và Đào tạo tỉnh Tiền Giang đã tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán nhằm lựa chọn học sinh có học lực tốt, chuẩn bị cho năm học mới 2019-2020. Đề tuyển sinh lớp 10 môn Toán năm 2019-2020 của sở GD&ĐT Tiền Giang bao gồm 05 bài toán được biên soạn theo dạng tự luận, thời gian làm bài thi là 120 phút, và có lời giải chi tiết. Một số bài toán trong đề tuyển sinh: Hai người đi xe đạp từ huyện A đến huyện B trên quãng đường dài 24 km, khởi hành cùng một lúc. Vận tốc xe của người thứ nhất hơn vận tốc xe của người thứ hai là 3 km/h nên người thứ nhất đến huyện B trước người thứ hai là 24 phút. Tính vận tốc của mỗi người. Cho hình nón có đường sinh bằng 17cm và diện tích xung quanh bằng 136pi cm2. Tính bán kính đáy và thể tích của hình nón. Cho parabol (P): y = x^2, các đường thẳng (d1): y = -x + 2 và (d2): y = x + m - 3. 1. Vẽ đồ thị của (P) và (d1) trên cùng một hệ trục tọa độ. 2. Bằng phép tính, tìm tọa độ giao điểm của (P) và (d1). 3. Tìm giá trị của tham số m, biết đường thẳng (d2) tiếp xúc với parabol (P). Đề tuyển sinh môn Toán năm 2019-2020 của sở GD&ĐT Tiền Giang là cơ hội để học sinh thể hiện kiến thức và kỹ năng Toán của mình, và cũng là bước quan trọng trong hành trình học tập và phát triển cá nhân của họ. Chúc các thí sinh thi tốt!
Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Nam Định
Nội dung Đề tuyển sinh THPT năm 2019 2020 môn Toán sở GD ĐT Nam Định Bản PDF - Nội dung bài viết Đề tuyển sinh THPT năm 2019-2020 môn Toán sở GD ĐT Nam Định Đề tuyển sinh THPT năm 2019-2020 môn Toán sở GD ĐT Nam Định Để tuyển chọn học sinh vào học tại các trường Trung học Phổ thông tại Nam Định, sở Giáo dục và Đào tạo tỉnh đã tổ chức kỳ thi Toán tuyển sinh lớp 10 THPT cho năm học 2019-2020. Đề thi được biên soạn theo dạng trắc nghiệm khách quan kết hợp với tự luận, với 8 câu trắc nghiệm và 5 câu tự luận. Thời gian làm bài là 120 phút, đề thi có đáp án và lời giải chi tiết. Ví dụ về câu hỏi trong đề tuyển sinh: Chứng minh tứ giác ABOC là tứ giác nội tiếp và ∆CEF đồng dạng ∆BEC. Chứng minh BF.CK = BK.CF. Chứng minh AE là tiếp tuyến của đường tròn ngoại tiếp ∆ABF. Tìm tất cả các giá trị của m để hàm số y = (1 – m)x + m + 1 đồng biến trên R. Xác định giá trị nhỏ nhất của biểu thức P = 1/2.(x + y + z)^2 + 4(x^2 + y^2 + z^2 – xy – yz – zx). Đề thi tuyển sinh môn Toán là cơ hội để học sinh thể hiện năng lực và kiến thức của mình, từ đó có cơ hội tiếp tục học tập tại các trường Trung học Phổ thông tại Nam Định.