Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Olympic 30 tháng 4 Toán 11 năm 2023 trường chuyên Lê Hồng Phong - TP HCM

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi Olympic truyền thống 30 tháng 4 môn Toán 11 lần thứ XXVII năm 2023 trường THPT chuyên Lê Hồng Phong, thành phố Hồ Chí Minh; kỳ thi được diễn ra vào thứ Bảy ngày 08 tháng 04 năm 2023. Trích dẫn Đề Olympic 30 tháng 4 Toán 11 năm 2023 trường chuyên Lê Hồng Phong – TP HCM : + Cho p là số nguyên tố có dạng 20n + 7. Gọi S là tập hợp tất cả các số nguyên dương có thể biểu diễn dưới dạng a2 + 5b2 với a và b là hai số nguyên tố cùng nhau. a. Chứng minh rằng tồn tại số nguyên dương k sao cho kp thuộc S. b. Tìm số nguyên dương k0 nhỏ nhất sao cho k0p thuộc S. + Cho tam giác nhọn, không cân ABC nội tiếp đường tròn (O;R). Các đường phân giác trong BX, CY của tam giác ABC cắt nhau tại I. J là trung điểm cung nhỏ BC của(O;R). Đường thẳng XY cắt các đường thẳng AI, BC lần lượt tại L, T. a. Chứng minh. b. Chứng minh đường thẳng qua I vuông góc với XY cắt đường thẳng OJ tại điểm O’ đối xứng với điểm O qua điểm J. c. Đường tròn nội tiếp (I) của tam giác ABC tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Gọi G là điểm đối xứng của D qua đường thẳng EF. Biết các đường thẳng DL, AG cắt nhau tại W, chứng minh WI vuông góc với XY. + Cho a < b < c là ba nghiệm thực của phương trình 8×3 – 4×2 – 4x + 1 = 0. a. Lập phương trình bậc ba có 3 nghiệm là 1 – 2a2, 1 – 2b2, 1 – 2c2. b. Chứng minh rằng: 2a2 + b = 2b2 + c = 2c2 + a = 1.

Nguồn: toanmath.com

Đọc Sách

Đề Olympic lớp 11 môn Toán năm 2020 2021 liên cụm trường THPT Hà Nội
Nội dung Đề Olympic lớp 11 môn Toán năm 2020 2021 liên cụm trường THPT Hà Nội Bản PDF Thứ Bảy ngày 20 tháng 03 năm 2021, liên cụm trường THPT: Thanh Xuân – Cầu Giấy – Mê Linh – Sóc Sơn – Đông Anh (thành phố Hà Nội) tổ chức kỳ thi Olympic Toán lớp 11 năm học 2020 – 2021. Đề Olympic Toán lớp 11 năm 2020 – 2021 liên cụm trường THPT – Hà Nội được biên soạn theo dạng đề thi tự luận, đề gồm 01 trang với 05 bài toán, thời gian làm bài 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề Olympic Toán lớp 11 năm 2020 – 2021 liên cụm trường THPT – Hà Nội : + Cho tam giác ABC cân tại A. Gọi AH là đường cao xuất phát từ đỉnh A. Biết độ dài các đoạn thẳng BC, AH, AB theo thứ tự tạo thành một cấp số nhân. Tìm công bội của cấp số nhân đó. + Trong hộp có 25 tấm thẻ giống nhau được đánh số theo thứ tự từ 1 đến 25. Rút ngẫu nhiên ba tấm thẻ từ trong hộp. 1) Có bao nhiêu cách để rút được ít nhất hai tấm thẻ mang số lẻ? 2) Tính xác suất để trong ba số ghi trên ba tấm thẻ rút được không có hai số nào là hai số tự nhiên liên tiếp. +  Gọi là mặt phẳng thay đổi và luôn đi qua trung điểm Q của đoạn thẳng AG. Mặt phẳng cắt các tia lần lượt tại các điểm M, N, P (không trùng với điểm A).  Tìm giá trị lớn nhất của biểu thức T.
Đề học sinh giỏi lớp 11 môn Toán năm 2020 2021 trường Phùng Khắc Khoan Hà Nội
Nội dung Đề học sinh giỏi lớp 11 môn Toán năm 2020 2021 trường Phùng Khắc Khoan Hà Nội Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề học sinh giỏi Toán lớp 11 năm học 2020 – 2021 trường THPT Phùng Khắc Khoan, huyện Thạch Thất, thành phố Hà Nội; đề gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề học sinh giỏi Toán lớp 11 năm 2020 – 2021 trường Phùng Khắc Khoan – Hà Nội : + Cho một đa giác lồi (H) có 30 đỉnh A1A2…A30. Gọi X là tập hợp các tam giác có 3 đỉnh là 3 đỉnh của (H). Chọn ngẫu nhiên 2 tam giác trong X. Tính xác suất để chọn được 2 tam giác là các tam giác có 1 cạnh là cạnh của đa giác (H). + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, (a) là mặt phẳng thay đổi qua AB và cắt các cạnh SC, SD lần lượt tại M, N (M khác S, C và N khác S, D). Gọi K là giao điểm của hai đường thẳng AN và BM. Chứng minh rằng biểu thức T = AB/MN – BC/SK có giá trị không đổi. + Cho hình lăng trụ tam giác ABC.A’B’C’ có đáy là tam giác đều cạnh a, các mặt bên đều là hình vuông. Gọi M, N, E lần lượt là trung điểm của các cạnh AB, AA’, A’C’. Tính diện tích thiết diện khi cắt lăng trụ ABC.A’B’C’ bởi mặt phẳng (MNE).
Đề Olympic 27 tháng 4 lớp 11 môn Toán năm 2020 2021 sở GD ĐT Bà Rịa Vũng Tàu
Nội dung Đề Olympic 27 tháng 4 lớp 11 môn Toán năm 2020 2021 sở GD ĐT Bà Rịa Vũng Tàu Bản PDF Thứ Sáu ngày 12 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu tổ chức kỳ thi Olympic 27 tháng 4 môn Toán lớp 11 năm học 2020 – 2021. Đề Olympic 27 tháng 4 Toán lớp 11 năm 2020 – 2021 sở GD&ĐT Bà Rịa – Vũng Tàu gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút.