Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra giữa học kì 2 (HK2) lớp 9 môn Toán năm 2021 2022 trường THCS Cát Linh Hà Nội

Nội dung Đề kiểm tra giữa học kì 2 (HK2) lớp 9 môn Toán năm 2021 2022 trường THCS Cát Linh Hà Nội Bản PDF - Nội dung bài viết Đề kiểm tra giữa học kỳ 2 môn Toán lớp 9 trường THCS Cát Linh Hà Nội Đề kiểm tra giữa học kỳ 2 môn Toán lớp 9 trường THCS Cát Linh Hà Nội Chào các thầy cô giáo và các em học sinh lớp 9! Dưới đây là đề kiểm tra giữa học kì 2 môn Toán lớp 9 năm học 2021 - 2022 của trường THCS Cát Linh, quận Đống Đa, thành phố Hà Nội. Kỳ thi này sẽ diễn ra vào thứ Sáu ngày 11 tháng 03 năm 2022. Đề bài sẽ bao gồm các câu hỏi sau: 1. Giải bài toán bằng cách lập hệ phương trình: Hai vòi nước cùng chảy vào một bể cạn trong 18 giờ thì đầy bể. Nếu vòi 1 chảy trong 4 giờ, vòi 2 chảy trong 7 giờ thì chỉ được 1/3 bể. Hỏi nếu mỗi vòi chảy một mình thì trong bao lâu sẽ đầy bể? 2. Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Từ A kẻ tiếp tuyến AM, AN tới đường tròn (M, N là các tiếp điểm). 1) Chứng minh tứ giác AMON nội tiếp. 2) Trên cung nhỏ MN lấy điểm B khác M, N và B không là điểm chính giữa của cung MN. Tia AB cắt đường tròn (O) tại điểm thứ hai C. Chứng minh: AM2 = AB.AC. 3) Gọi H là giao điểm của AO và MN. Chứng minh: AHB = ACO. 3. Cho ba số thực không âm a, b, c và a + b + c = 3. Tìm giá trị lớn nhất của biểu thức K. Chúc các em sẽ làm bài thi tốt và đạt kết quả cao trong đề kiểm tra này. Hãy cố gắng và tự tin đối mặt với mọi thử thách!

Nguồn: sytu.vn

Đọc Sách

Đề giữa học kì 2 Toán 9 năm 2023 - 2024 phòng GDĐT Hiệp Hòa - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng giữa học kì 2 môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Hiệp Hòa, tỉnh Bắc Giang; đề thi gồm 02 trang, cấu trúc 30% trắc nghiệm (15 câu) + 70% tự luận (05 câu), thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giữa học kì 2 Toán 9 năm 2023 – 2024 phòng GD&ĐT Hiệp Hòa – Bắc Giang : + Trong kỳ thi Tuyển sinh vào lớp 10 THPT năm học 2022 – 2023, tổng chỉ tiêu tuyển sinh của Trường THPT A và Trường THPT B là 900 học sinh. So với chỉ tiêu tuyển sinh thì số lượng thí sinh đăng ký dự tuyển vào Trường THPT A và Trường THPT B nhiều hơn lần lượt là 15% và 10%. Biết tổng số thí sinh đăng ký dự tuyển của cả hai trường là 1010. Hỏi chỉ tiêu tuyển sinh của mỗi trường là bao nhiêu học sinh? + Cho đường tròn (O R) và đường thẳng d không có điểm chung với đường tròn (O). Gọi H là hình chiếu của O trên đường thẳng d. Từ một điểm M bất kì trên đường thẳng dM H kẻ hai tiếp tuyến MA, MB với đường tròn (O) (A và B là các tiếp điểm). Dây AB cắt OH tại C và cắt OM tại D. Chứng minh rằng: a) Tứ giác MAOB nội tiếp. b) OC OH OD OM. c) Khi điểm M di chuyển trên đường thẳng d thì dây AB luôn đi qua một điểm cố định. + Trên đường tròn O cm 3 lấy hai điểm A và B sao cho số đo cung AB lớn bằng 0 300. Khi đó diện tích hình quạt tạo bởi hai bán kính OA OB và cung nhỏ AB là?
Đề giữa học kỳ 2 Toán 9 năm 2023 - 2024 trường THCS Nguyễn Bỉnh Khiêm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kỳ 2 môn Toán 9 năm học 2023 – 2024 trường THCS Nguyễn Bỉnh Khiêm, quận Long Biên, thành phố Hà Nội. Trích dẫn Đề giữa học kỳ 2 Toán 9 năm 2023 – 2024 trường THCS Nguyễn Bỉnh Khiêm – Hà Nội : + Giải bài toán bằng cách lập hệ phương trình: Một khu vườn hình chữ nhật có chu vi là 240 m. Nếu tăng chiều dài thêm 9m, tăng chiều rộng thêm 7m thì diện tích khu vườn sẽ tăng thêm 963 m2. Tính chiều dài và chiều rộng của khu vườn ban đầu. + Cho (P): y = x2 và đường thẳng (d): y = mx – 2. a) Bằng phép toán, hãy tìm tọa độ giao điểm của (d) và (P) với m = 1. b) Chứng tỏ rằng với mọi giá trị của m thì (d) luôn cắt (P) tại 2 điểm phân biệt. + Cho đường tròn (O) đường kính AB = 2R. Lấy điểm M nằm giữa hai điểm O và B, kẻ dây CD vuông góc với AB tại M. Gọi E là điểm trên cung nhỏ AC (E khác A và E khác C), N là giao điểm của BE và CD. a) Chứng minh 4 điểm A, M, N, E cùng thuộc một đường tròn. b) Chứng minh AC2 = AM.AB. c) Chứng minh AC2 + BE.BN = 4R2. d) Kẻ dây DK song song với dây BE. Chứng minh AK vuông góc với CE.
Đề giữa học kì 2 Toán 9 năm 2023 - 2024 phòng GDĐT Tân Yên - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Tân Yên, tỉnh Bắc Giang; đề thi gồm 02 trang, hình thức 30% trắc nghiệm + 70% tự luận, thời gian làm bài 90 phút, có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giữa học kì 2 Toán 9 năm 2023 – 2024 phòng GD&ĐT Tân Yên – Bắc Giang : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Hai tổ công nhân sản xuất trong tháng đầu được 300 chi tiết máy. Sang tháng thứ hai tổ một vượt mức 15%, tổ hai vượt mức 20% so với tháng một, do đó cả hai tổ sản xuất được 352 chi tiết máy. Tính số chi tiết máy mà mỗi tổ sản xuất được trong tháng đầu. + Cho đường tròn tâm O, từ điểm A nằm ngoài đường tròn kẻ hai tiếp tuyến AB, AB (B và C là các tiếp điểm). 1. Chứng minh tứ giác ABOC nội tiếp đường tròn. 2. Kẻ cát tuyến ADE theo thứ tự đó, chứng minh 2 AC AD AE. 3. Gọi H là giao điểm của AO và BC. Chứng minh DOE DHE. + Tìm giá trị của tham số m để phương trình 3 2 x 3 (1) 1 0 có 3 nghiệm 123 x cùng dấu thoả mãn 2 Ax 123 đạt giá trị nhở nhất.
Đề kiểm tra giữa học kỳ 2 Toán 9 năm 2023 - 2024 sở GDĐT Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kỳ 2 môn Toán 9 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bắc Ninh; kỳ thi được diễn ra vào sáng thứ Tư ngày 20 tháng 03 năm 2024. Trích dẫn Đề kiểm tra giữa học kỳ 2 Toán 9 năm 2023 – 2024 sở GD&ĐT Bắc Ninh : + Một mảnh đất hình chữ nhật có chu vi 80m. Nếu tăng chiều dài thêm 3m, chiều rộng thêm 5m thì diện tích của mảnh đất tăng thêm 195m2. Tính diện tích ban đầu của mảnh đất. + Từ một điểm M nằm ngoài đường tròn (O), kẻ hai tiếp tuyến MA, MB (A, B là tiếp điểm). Kẻ đường kính AC, gọi H là giao điểm của OM và AB, CH cắt đường tròn tại N (N khác C), MN cắt đường tròn (O) tại điểm thứ hai là D. Chứng minh rằng: a) Tứ giác MAOB nội tiếp một đường tròn. b) MA2 = MN.MD. c) MDO = MHN và D, O, B thẳng hàng. + Cho a, b, c là các số thực dương thỏa mãn a + b + c = 1. Tìm giá trị lớn nhất của biểu thức A.