Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL Toán 11 lần 1 năm 2018 - 2019 trường Thuận Thành 1 - Bắc Ninh

Đề KSCL Toán 11 lần 1 năm 2018 – 2019 trường Thuận Thành 1 – Bắc Ninh được biên soạn và tổ chức thi sau khi các em hoàn thành kỳ thi học kỳ 1 Toán 11 và chuẩn bị bước vào đợt nghỉ Tết Nguyên Đán, đề có mã 132 với 06 trang, 50 câu trắc nghiệm khách quan, thí sinh làm bài thi trong 90 phút, đề bao quát toàn bộ các kiến thức Toán 11 mà các em đã học từ đầu năm học đến lúc diễn ra kỳ thi, đề thi có đáp án. Trích dẫn đề KSCL Toán 11 lần 1 năm 2018 – 2019 trường Thuận Thành 1 – Bắc Ninh : + Khẳng định nào sau đây sai? A. Nếu hai mặt phẳng phân biệt cùng song song với mặt phẳng thứ ba thì chúng song song với nhau. B. Nếu mặt phẳng (P) chứa hai đường thẳng phân biệt cùng song song với mặt phẳng (Q) thì mặt phẳng (P) song song với mặt phẳng (Q). C. Nếu hai mặt phẳng không có điểm chung nào thì chúng song song với nhau. D. Nếu hai mặt phẳng song song thì mọi đường thẳng nằm trong mặt phẳng này đều song song với mặt phẳng kia. [ads] + Có 2 hộp A và B, hộp A chứa 6 viên bi trắng và 4 viên bi đen, hộp B chứa 7 viên bi trắng và 3 viên bi đen (các viên bi coi như khác nhau). Người ta lấy ngẫu nhiên một viên bi từ hộp A bỏ vào hộp B. Rồi sau đó lấy ngẫu nhiên 2 viên bi từ hộp B. Tính xác suất để 2 viên bi lấy từ hộp B là 2 viên bi trắng? + Bài kiểm tra khảo sát môn toán có 50 câu trắc nghiệm. Mỗi câu có 4 phương án trả lời, trong đó chỉ có một phương án trả lời đúng, các phương án còn lại sai. Mỗi câu trả lời đúng được 0,2 điểm, câu trả lời sai không được tính điểm. Bạn A trả lời đúng được 25 câu, 25 câu còn lại khoanh bừa. Tính xác suất để bạn A được 8 điểm toán?

Nguồn: toanmath.com

Đọc Sách

Đề thi sát hạch lớp 11 môn Toán lần 2 năm học 2017 2018 trường THPT Đoàn Thượng Hải Dương
Nội dung Đề thi sát hạch lớp 11 môn Toán lần 2 năm học 2017 2018 trường THPT Đoàn Thượng Hải Dương Bản PDF Đề thi sát hạch Toán lớp 11 lần 2 năm học 2017 – 2018 trường THPT Đoàn Thượng – Hải Dương gồm 15 bài toán tự luận, thời gian làm bài 120 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi sát hạch Toán lớp 11 : + Từ 1 nhóm học sinh của lớp 10A gồm 5 bạn học giỏi môn Toán, 4 bạn học giỏi môn Lý, 3 bạn học giỏi môn Hóa, 2 bạn học giỏi môn Văn (mỗi học sinh chỉ học giỏi đúng 1 môn). Đoàn trường chọn ngẫu nhiên 4 học sinh để tham gia thi hành trình tri thức. Tính xác suất để chọn được 4 học sinh sao cho có ít nhất 1 bạn học giỏi Toán và ít nhất 1 bạn học giỏi Văn. [ads] + Cho tứ diện ABCD, lấy điểm M trên cạnh BC, mặt phẳng (P) đi qua M và song song với 2 cạnh AC, BD. Hãy xác định thiết diện của hình chóp khi cắt bởi mp(P), thiết diện là hình gì? + Trong mặt phẳng Oxy cho đường thẳng d có phương trình x – 2y + 6 = 0 và véc tơ u(-2; 3). Hãy viết phương trình đường thẳng Δ sao cho phép tịnh tiến theo véc tơ u biến đường thẳng Δ thành đường thẳng d. File WORD (dành cho quý thầy, cô):
Đề thi khảo sát lớp 11 môn Toán lần 1 năm học 2017 2018 trường THPT Tứ Sơn Bắc Giang
Nội dung Đề thi khảo sát lớp 11 môn Toán lần 1 năm học 2017 2018 trường THPT Tứ Sơn Bắc Giang Bản PDF Đề thi khảo sát Toán lớp 11 lần 1 năm học 2017 – 2018 trường THPT Tứ Sơn – Bắc Giang gồm 4 mã đề, mỗi đề gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi : + Trong các mệnh đề sau , mệnh đề nào đúng? A. Có một phép đối xứng trục là phép đồng nhất B. Thực hiện liên tiếp phép quay và phép vị tự ta được phép đồng dạng C. Phép đồng dạng là một phép dời hình D. Phép vị tự là một phép dời hình [ads] + Phương trình (cosx)^2 + (cos2x)^2 + (cos3x)^2 + (cos4x)^2 = 2 tương đương với phương trình lượng giác nào dưới đây: A. cosx.cos2x.cos5x = 0 B. sinx.sin2x.sin4x = 0 C. sinx.sin2x.sin5x = 0 D. cosx.cos2x.cos4x = 0 + Cho 2 đường thẳng song song. Trên đường thẳng thứ nhất lấy 7 điểm phân biệt, trên đường thẳng thứ hai lấy 9 điểm phân biệt. Hỏi có bao nhiêu tam giác có các đỉnh thuộc tập 16 điểm đã lấy trên hai đường thẳng trên? A. 560 tam giác B. 270 tam giác C. 441 tam giác D. 150 tam giác File WORD (dành cho quý thầy, cô):
Đề thi chuyên đề tháng 10 năm học 2017 2018 lớp 11 môn Toán trường Nguyễn Thái Học Vĩnh Phúc
Nội dung Đề thi chuyên đề tháng 10 năm học 2017 2018 lớp 11 môn Toán trường Nguyễn Thái Học Vĩnh Phúc Bản PDF Đề thi chuyên đề tháng 10 năm học 2017 – 2018 môn Toán lớp 11 trường Nguyễn Thái Học – Vĩnh Phúc gồm 8 mã đề, mỗi đề gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án . Trích dẫn đề thi : + Tìm khẳng định sai: Phép đồng dạng tỉ số k A. Biến đường tròn bán kính R thành đường tròn bán kính kR B. Biến ba điểm thẳng hàng thành ba điểm thẳng hàng và bảo toàn thứ tự giữa các điểm ấy C. Biến đường thẳng thành đường thẳng thì hai đường thẳng đó song song hoặc trùng nhau D. Biến tam giác thành tam giác đồng dạng với nó [ads] + Chọn phát biểu sai trong các phát biểu sau: A. Đồ thị của hàm số y = sin2x nhận điểm O làm tâm đối xứng B. Đồ thị của hàm số y = cosx nhận trục Oy làm trục đối xứng C. Đồ thị của hàm số y = tan3x nhận điểm O làm tm đối xứng D. Đồ thị của hàm số y = cotx nhận trục Oy làm trục đối xứng + Cho điểm M trong mặt phẳng. Tìm khẳng định sai A. vtMM’ = vta thì phép đặt tương ứng điểm M với điểm M’ là phép biến hình B. Nếu a > 0, MM’ = a thì phép đặt tương ứng điểm M với điểm M’ là phép biến hình C. M’ là hình chiếu vuông góc của M trên đường thẳng d, phép đặt tương ứng điểm M với điểm M’ là phép biến hình D. M’ đối xứng M qua điểm I thi phép đặt tương ứng điểm M với điểm M’ là phép biến hình File WORD (dành cho quý thầy, cô):
Đề thi KSCL lớp 11 môn Toán lần 1 năm học 2017 2018 trường THPT Liễn Sơn Vĩnh Phúc
Nội dung Đề thi KSCL lớp 11 môn Toán lần 1 năm học 2017 2018 trường THPT Liễn Sơn Vĩnh Phúc Bản PDF Đề thi KSCL Toán lớp 11 lần 1 năm học 2017 – 2018 trường THPT Liễn Sơn – Vĩnh Phúc gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi : + Cho tập A = {1, 2, 3, 4, 5, 6}. Từ các chữ số của tập A có thể lập được tất cả bao nhiêu số tự nhiên chẵn có 4 chữ số khác nhau. + Cho đường thẳng d: 3x – 2y + 1 = 0 và điểm I(1; 0). Phép vị tự tâm I, tỷ số 2 biến đường thẳng d thành đường thẳng d’. Viết phương trình đường thẳng d’. + Cho A(1; 2), B(-2; 5) và đường tròn (T): x^2 + y^2 – 4x + 2y – 4 = 0. Tìm tọa độ hai điểm C, D cùng thuộc đường tròn (T) sao cho tứ giác ABCD là hình bình hành. [ads]