Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử vào 10 chuyên 2023 lần 1 Toán chung trường THPT chuyên ĐHSP Hà Nội

Nội dung Đề thi thử vào 10 chuyên 2023 lần 1 Toán chung trường THPT chuyên ĐHSP Hà Nội Bản PDF - Nội dung bài viết Chia sẻ đề thi thử vào 10 chuyên 2023 lần 1 Toán chung trường THPT chuyên ĐHSP Hà Nội Chia sẻ đề thi thử vào 10 chuyên 2023 lần 1 Toán chung trường THPT chuyên ĐHSP Hà Nội Xin chào quý thầy, cô giáo và các em học sinh lớp 9. Hôm nay Sytu xin giới thiệu đến các bạn đề thi thử tuyển sinh vào lớp 10 THPT chuyên năm 2023 lần 1 môn Toán chung trường THPT chuyên Đại học Sư phạm Hà Nội, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào chiều Chủ Nhật ngày 26 tháng 03 năm 2023. Đây là một số câu hỏi thú vị từ đề thi: Một kho hàng nhập gạo theo quy luật nhất định. Hãy tính lượng gạo kho hàng nhập ngày thứ nhất trong mỗi trường hợp sau: a) Tính lượng gạo kho hàng nhập ngày thứ nhất khi biết rằng sau khi nhập xong vào ngày thứ ba, kho có tổng cộng 380 tấn gạo. b) Biết số lượng gạo đã xuất trong ngày thứ năm là 342 tấn, hãy tính lượng gạo nhập vào kho ngày đầu tiên. Cho tam giác MAB nằm trong đường tròn (O) và điểm E là giao điểm của đoạn thẳng MO với đường tròn (O). Hãy chứng minh rằng E là tâm của đường tròn nội tiếp tam giác MAB. Câu b và c bạn có thể thử giải ngay trên đề thi để kiểm tra kiến thức của mình. Xét các số thực a, b, c trong khoảng 1 và 2. Tìm giá trị lớn nhất của biểu thức M có dạng phức tạp. Hy vọng các bạn sẽ học tập và ôn tập tốt để chuẩn bị cho kỳ thi sắp tới. Chúc các bạn thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Đà Nẵng
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Đà Nẵng gồm 5 bài toán tự luận. Trích một số bài toán trong đề: + Một đội xe cần vận chuyển 160 tấn gạo với khối lượng mỗi xe chở bằng nhau. Khi sắp khởi hành thì được bổ sung thêm 4 xe nữa nên mỗi xe chở ít hơn dự định lúc đầu 2 tấn gạo (khối lượng mỗi xe chở vẫn bằng nhau). Hỏi đội xe ban đầu có bao nhiêu chiếc? + Cho nửa đường tròn tâm O đường kính AB và C là một điểm trên nửa đường tròn (C khác A, B). Trên cung AC lấy D (D khác A và C). Gọi H là hình chiếu vuông góc của C lên AB và E là giao điểm của BD và CH [ads] a) Chứng minh ADEH là tứ giác nội tiếp b) Chứng minh rằng góc ACO = góc HCB và AB.AC = AC.AH + CB.CH c) Trên đoạn OC lấy điểm M sao cho OM = CH. Chứng minh rằng khi C thay đổi trên nữa đường tròn đã cho thì M chạy trên một đường tròn cố định
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán sở GD và ĐT Tây Ninh
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán sở GD và ĐT Tây Ninh (Đề chung dành cho tất cả thí sinh) gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho tam giác ABC vuông tại A, có sinACB = 3/5. Tính tanABC. + Cho tam giác ABC nhọn (AB < AC) nội tiếp trong đường tròn (O). Gọi D là điểm chính giữa cung lớn BC. Gọi E, F lần lượt là chân đường vuông góc kẻ từ D đến đường phân giác trong góc B và đường phân giác trong góc C của tam giác ABC. Chứng minh trung điểm H của EF cách đều hai điểm B và C.
Đề thi tuyển sinh lớp 10 năm học 2017 - 2018 môn Toán trường THPT chuyên Lam Sơn - Thanh Hóa
Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên Lam Sơn – Thanh Hóa (Đề chung dành cho tất cả thí sinh) gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Cho đường tròn (O) với tâm O có bán kính R đường kính AB cố định, M là một điểm di động trên (O) .sao cho M không trùng với các điểm A và B. Lấy C là điểm đối xứng với O qua A. Đường thẳng vuông góc với AB tại C cắt đường thẳng AM tại N đường thẳng BN cắt đường tròn (O) tại điểm thứ hai E. Các đường thẳng BM và CN cắt nhau tại F [ads] a) Chứng minh ba điểm A; E; F thẳng hàng và tứ giác MENF nội tiếp b) Chứng minh: AM.AN = 2R^2 c) Xác định vị trí của điểm M trên đường tròn (O) để tam giác BNF có diện tích nhỏ nhất
Đề thi thử tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán trường THCS Võ Thị Sáu - Hải Phòng lần 1
Đề thi thử tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán trường THCS Võ Thị Sáu – Hải Phòng lần 1 gồm 5 bài toán tự luận, có lời giải chi tiết. Trích một số bài toán trong đề: + Một hãng taxi giá rẻ định giá tiền theo hai gói cước trong bảng giá như sau: Gói 1: Giá mở cửa là 6000 đồng/1km cho 10km đầu tiên và 2500 đồng với mỗi km tiếp theo Gói 2: 4000 đồng cho mỗi km trên cả quãng đường a) Nếu cô Tâm cần đi một quãng đường là 35 km thì chọn gói cước nào có lợi hơn? b) Nếu cô Tâm cần đi một quãng đường là x km mà chọn gói cước 1 có lợi hơn thì x phải thỏa mãn điều kiện gì? [ads] + Cho đường tròn (O; R), đường kính AB vuông góc với dây cung MN tại điểm H (H nằm giữa O và B). Trên tia đối của tia NM lấy điểm C sao cho đoạn thẳng AC cắt (O) tại K khác A. Hai dây MN và BK cắt nhau ở E a/ Chứng minh tứ giác AHEK nội tiếp b/ Qua N kẻ đường thẳng vuông góc với AC cắt tia MK tại F. Chứng minh tam giác NFK cân và EM.NC = EN.CM c/ Giả sử KE = KC. Chứng minh OK//MN và KM^2 + KN^2 = 4R^2 + Một hình trụ có thể tích bằng 35pi dm3. Hãy so sánh thể tích hình trụ này với thể tích hình cầu đường kính 6dm