Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 12 năm 2023 - 2024 trường THPT Bình Chiểu - TP HCM

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp trường môn Toán 12 năm học 2023 – 2024 trường THPT Bình Chiểu, thành phố Hồ Chí Minh; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 12 năm 2023 – 2024 trường THPT Bình Chiểu – TP HCM : + Một người vay tiền ở một ngân hàng theo hình thức lãi kép với lãi suất 0,7%/tháng với tổng số tiền vay là 1 tỉ đồng. Mỗi tháng người đó đều trả cho ngân hàng một số tiền như nhau để trừ vào tiền gốc và lãi. Biết rằng đúng 25 tháng thì người đó trả hết gốc và lãi cho ngân hàng. Hỏi số tiền của người đó trả cho ngân hàng ở mỗi tháng là bao nhiêu? + Một người đàn ông muốn chèo thuyền từ vị trí A tới điểm B về phía hạ lưu bờ đối diện càng nhanh càng tốt trên một bờ sông thẳng rộng 3km (như hình vẽ). Anh có thể chèo thuyền của mình trực tiếp qua sông để đến C và sau đó chạy đến B, hay có thể chèo trực tiếp đến B, hoặc anh ta có thể chèo thuyền đến một điểm D giữa B và C và sau đó chạy đến B. Biết anh ấy có thể chèo thuyền 6km/h, chạy bộ 8km/h và quãng đường BC=8km. Biết tốc độ dòng nước là không đáng kể so với tốc độ chèo thuyền của người đàn ông. Tính khoảng thời gian ngắn nhất (đơn vị: giờ) để người đàn ông đến B. + Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a. Mặt phẳng qua AB và trung điểm M của SC cắt hình chóp theo thiết diện có chu vi bằng 7a. Tính thể tích của khối nón có đỉnh là S và đường tròn đáy ngoại tiếp tứ giác ABCD.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn HSG Toán 12 chuyên năm học 2018 - 2019 sở GDĐT Đồng Nai
Đề thi chọn HSG Toán 12 chuyên năm học 2018 – 2019 sở GD&ĐT Đồng Nai gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 180 phút, kỳ thi được tổ chức ngày 18 tháng 01 năm 2019 nhằm tuyển chọn các em học sinh giỏi Toán đang theo học hệ chương trình chuyên tại tỉnh Đồng Nai để tuyên dương, khen thưởng, đồng thời thành lập đội tuyển học sinh giỏi tỉnh Đồng Nai tham dự kỳ thi học sinh giỏi Toán chuyên cấp Quốc gia. Trích dẫn đề thi chọn HSG Toán 12 chuyên năm học 2018 – 2019 sở GD&ĐT Đồng Nai : + Cho m, n là các số tự nhiên thỏa mãn 4m^3 + m = 12n^3 + n. Chứng minh rằng m – n là lập phương của một số nguyên. [ads] + Cho tam giác ABC nội tiếp đường tròn (O) có trực tâm H, K là trung điểm BC và G là hình chiếu vuông góc của H trên AK. Lấy D đối xứng G qua BC và I đối xứng C qua D. Tia phân giác góc ACB cắt AB tại F và tia phân giác góc BID cắt BD ở M, MF cắt AC tại E. 1) Chứng minh rằng D nằm trên đường tròn (O). 2) Tiếp tuyến tại A của (O) cắt BC ở X, XE cắt đường tròn ngoại tiếp tam giác EBM ở điểm thứ hai là Y. Chứng minh rằng đường tròn ngoại tiếp tam giác EYD tiếp xúc đường tròn (O).
Đề thi chọn HSG Toán THPT cấp tỉnh năm 2018 - 2019 sở GDĐT Hưng Yên
giới thiệu đến thầy, cô và các em nội dung đề thi chọn HSG Toán THPT cấp tỉnh năm 2018 – 2019 sở GD&ĐT Hưng Yên, đề gồm 01 trang với 06 bài toán tự luận, học sinh làm bài thi trong thời gian 180 phút, kỳ thi nhằm phát hiện, tuyển chọn các em học sinh giỏi môn Toán THPT đang học tập tại các trường THPT tại tỉnh Hưng Yên để tuyên dương, khen thưởng, đồng thời thành lập đội tuyển học sinh giỏi Toán tỉnh Hưng Yên tham dự kỳ thi HSG Toán THPT cấp Quốc gia. Trích dẫn đề thi chọn HSG Toán THPT cấp tỉnh năm 2018 – 2019 sở GD&ĐT Hưng Yên : + Cho hàm số y = x^4 – mx^2 + 2m – 2 (C) với m là tham số. Gọi A là một điểm thuộc đồ thị (C) có hoành độ bằng 1. Tìm các giá trị của m để tiếp tuyến của đồ thị (C) tại A cắt đường tròn (T): x^2 + y^2 = 4 tại hai điểm phân biệt tạo thành một dây cung có độ dài nhỏ nhất. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh 2a và góc ABC = 60 độ. Gọi E, F lần lượt là trung điểm của các cạnh SC, SD. Biết SA = SC = SD và mặt phẳng (ABEF) vuông góc với mặt bên (SCD), tính thể tích khối chóp S.ABCD theo a. + Cho đa thức f(x) = x^4 + ax^3 + bx^2 + cx + 1 với a, b, c là số thực không âm. Biết rằng f(x) = 0 có 4 nghiệm thực, chứng minh f(2018) = 2019^4.
Đề thi chọn học sinh giỏi cấp tỉnh Toán THPT năm 2018 - 2019 sở GDĐT Lào Cai
Đề thi chọn học sinh giỏi cấp tỉnh Toán THPT năm 2018 – 2019 sở GD&ĐT Lào Cai được biên soạn và tổ chức thi ngày 22 tháng 01 năm 2019 nhằm tìm kiếm và tuyên dương các em học sinh khối THPT giỏi môn Toán đang học tập tại các trường THPT tại tỉnh Lào Cai, đề gồm 01 trang với 05 bài toán tự luận, học sinh làm bài thi trong vòng 180 phút. Trích dẫn đề thi chọn học sinh giỏi cấp tỉnh Toán THPT năm 2018 – 2019 sở GD&ĐT Lào Cai : + Trong mặt phẳng với hệ tọa độ Oxy, cho hình thang vuông ABCD vuông tại A và D, có CD = 2AD = 2AB. Gọi M (2;4) là điểm thuộc cạnh AB sao cho AB = 3AM . Điểm N thuộc cạnh BC sao cho tam giác DMN cân tại M. Phương trình đường thẳng MN là 2x + y – 8 = 0. Tìm tọa độ các đỉnh của hình thang ABCD biết D thuộc đường thẳng d: x + y = 0 và điểm A thuộc đường thẳng d’: 3x + y – 8 = 0. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Biết hình chiếu vuông góc của S lên mặt phẳng (ABCD) là điểm M thỏa mãn AD = 3MD. Trên cạnh CD lấy các điểm I, N sao cho góc ABM = MBI và MN vuông góc với BI. Biết góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 60°. Tính thể tích của khối chóp S.AMCB và tính khoảng cách từ N đến mặt phẳng (SBC). + Cho hàm số y = f(x) có đạo hàm f'(x) = (x – 3)^2018.(e^2x – e^x + 1/3).(x^2 – 2x) với mọi x thuộc R. Tìm tất cả các số thực m để hàm số f(x^2 – 8x + m) có đúng 3 điểm cực trị sao cho x1^2 + x2^2 + x3^2 = 50 trong đó x1, x2, x3 là hoành độ của ba điểm cực trị đó.
Đề thi chọn HSG Toán 12 THPT năm 2018 - 2019 sở GDĐT Đồng Nai
giới thiệu đến bạn đọc nội dung đề thi chọn HSG Toán 12 THPT năm 2018 – 2019 sở GD&ĐT Đồng Nai, kỳ thi được diễn ra vào ngày 18 tháng 01 năm 2019, đề thi được dành cho học sinh khối 12 theo học chương trình chuẩn hệ THPT, đề gồm 06 bài toán tự luận, thời gian làm bài 180 phút, bên dưới là lời giải tham khảo của đề thi này. Trích dẫn đề thi chọn HSG Toán 12 THPT năm 2018 – 2019 sở GD&ĐT Đồng Nai : + Cho hàm số y = 2x^3 – 3(m + 3)x^2 + 18mx + 8, với m là tham số. a) Tìm m để hàm số đã cho đồng biến trên R. b) Tìm m để đồ thị hàm số đã cho có hai điểm cực trị nằm vế hai phía của trục tung. c) Tìm m để giá trị nhô nhất của hàm số đã cho trên đoạn [-1;0] bằng 24. + Chứng minh rằng 3nCn chia hết cho 3 với mọi n nguyên dương. [ads] + Trong một tiết học môn Toán, giáo viên mời ba học sinh A, B, C thực hiện trò chơi chơi như sau: Mỗi bạn A, B, C chọn ngẫu nhiên một số nguyên khác 0 thuộc khoảng (-6;6) và lần lượt thế vào ba tham số của hàm số y = ax^4 + bx^2 + c; nếu đồ thị hàm số thu được có ba điểm cực trị đều nằm phía trên trục hoành thì được nhận thưởng. Tính xác suất để ba học sinh A, B, C được nhận thưởng.