Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề nguyên hàm, tích phân và ứng dụng - Trần Quốc Nghĩa

Tài liệu gồm 224 trang phân dạng và hướng dẫn giải các dạng toán nguyên hàm, tích phân và ứng dụng kèm theo các bài tập trắc nghiệm và tự luận có đáp án, lời giải chi tiết. Tài liệu được biên soạn bởi thầy Trần Quốc Nghĩa. Nội dung tài liệu : Vấn đề 1 . Nguyên hàm của hàm số + Dạng 1. Dùng định nghĩa nguyên hàm + Dạng 2. Tìm nguyên hàm dựa vào bảng công thức + Dạng 3. Tìm nguyên hàm bằng phương pháp phân tích + Dạng 4. Tìm nguyên hàm bằng phương pháp đổi biến số và phương pháp sử dụng gián tiếp bảng nguyên hàm + Dạng 5. Tìm nguyên hàm bằng phương pháp đổi từng phần + Dạng 6. Tìm nguyên hàm bằng cách thêm, bớt vào biểu thức dưới dấu tích phân + Dạng 7. Nguyên hàm có điều kiện Vấn đề 2 . Tích phân + Dạng 1. Tính tích phân bằng định nghĩa + Dạng 2. Tính tích phân bằng cách sử dụng tính chất của tích phân + Dạng 3. Tính tích phân thông qua tính diện tích hình phẳng + Dạng 4. Tính tích phân hàm đa thức bằng phương pháp phân tích + Dạng 5. Tính tích phân hàm lượng giác bằng phương pháp phân tích + Dạng 6. Tính tích phân hàm hữu tỉ + Dạng 7. Tính tích phân hàm chứa dấu giá trị tuyệt đối. Tích phân min, max + Dạng 8. Tính tích phân bằng phương pháp đổi biến + Dạng 9. Tính tích phân bằng phương pháp tích phân từng phần + Dạng 10. Những bài tích phân tính được bằng nhiều phương pháp + Dạng 11. Chứng minh đẳng thức, bất đẳng thức tích phân + Dạng 12. Tích phân truy hồi + Dạng 13. Hàm số dưới dạng tích phân [ads] Vấn đề 3 . Ứng dụng nguyên hàm – tích phân + Dạng 1. Diện tích hình phẳng + Dạng 2. Thể tích + Dạng 3. Ứng dụng tích phân để tìm khoảng đơn điệu của hàm số từ đó phác họa đồ thị của hàm số + Dạng 4. Sử dụng tích phân trong chứng minh đẳng thức của nCk + Dạng 5. Sử dụng tích phân trong bài toán chuyển động + Dạng 6. Sử dụng tích phân trong tính công của lực tác dụng + Dạng 7. Sử dụng tích phân trong bài toán tăng trưởng và phát triển Vấn đề 4 . Nguyên hàm, tích phân và ứng dụng trong các đề thi Đại học – Cao đẳng – THPT Quốc gia 

Nguồn: toanmath.com

Đọc Sách

Tổng ôn tập TN THPT 2021 môn Toán Nguyên hàm, tích phân và ứng dụng
Tài liệu gồm 163 trang, được tổng hợp bởi thầy giáo Nguyễn Bảo Vương, tuyển tập câu hỏi và bài tập trắc nghiệm chuyên đề nguyên hàm, tích phân và ứng dụng, có đáp án và lời giải chi tiết. Các câu hỏi và bài tập được trích từ các đề thi thử tốt nghiệp THPT năm 2021 môn Toán của các trường THPT và sở GD&ĐT trên cả nước, với mục đích giúp các em học sinh rèn luyện, rà soát kiến thức chủ đề Giải tích 12 chương 3, trước khi bước vào kỳ thi tốt nghiệp THPT 2021 môn Toán và các kỳ thi tuyển sinh Đại học – Cao đẳng. Mục lục tài liệu tổng ôn tập TN THPT 2021 môn Toán: Nguyên hàm, tích phân và ứng dụng: 1. Mức độ nhận biết: 105 câu. + Câu hỏi và bài tập (Trang 01). + Đáp án và lời giải chi tiết (Trang 15). 2. Mức độ thông hiểu: 94 câu. + Câu hỏi và bài tập (Trang 37). + Đáp án và lời giải chi tiết (Trang 50). 3. Mức độ vận dụng thấp: 57 câu. + Câu hỏi và bài tập (Trang 78). + Đáp án và lời giải chi tiết (Trang 89). 4. Mức độ vận dụng cao: 52 câu. + Câu hỏi và bài tập (Trang 115). + Đáp án và lời giải chi tiết (Trang 126). Xem thêm : + Tổng ôn tập TN THPT 2021 môn Toán: Ứng dụng đạo hàm và khảo sát hàm số + Tổng ôn tập TN THPT 2021 môn Toán: Hàm số lũy thừa – mũ – logarit
5 dạng toán ứng dụng của tích phân thường gặp
Tài liệu gồm 124 trang, được tổng hợp bởi thầy giáo Hoàng Tuyên và thầy giáo Lê Minh Tâm, tuyển chọn các dạng bài tập ứng dụng của tích phân thường gặp trong chương trình Giải tích 12 chương 3 (nguyên hàm, tích phân và ứng dụng). Các bài tập ứng dụng của tích phân được phân chia thành 5 dạng toán: DẠNG TOÁN 1 . ỨNG DỤNG CỦA TÍCH PHÂN TÍNH DIỆN TÍCH HÌNH PHẲNG. Dạng 1.1. Ứng dụng của tích phân tính diện tích hình phẳng (không có điều kiện). Dạng 1.2. Ứng dụng của tích phân tính diện tích hình phẳng (có điều kiện). DẠNG TOÁN 2 . ỨNG DỤNG CỦA TÍCH PHÂN TÍNH THỂ TÍCH KHỐI TRÒN XOAY. Dạng 2.1. Ứng dụng của tích phân tính thể tích khối tròn xoay (không có điều kiện). Dạng 2.2. Ứng dụng của tích phân tính thể tích khối tròn xoay (có điều kiện). DẠNG TOÁN 3 . ỨNG DỤNG CỦA TÍCH PHÂN ĐỂ GIẢI BÀI TOÁN CHUYỂN ĐỘNG. Dạng 3.1. Bài toán cho biết hàm số của vận tốc, quãng đường của chuyển động. Dạng 3.2. Bài toán cho biết đồ thị của vận tốc, quãng đường của chuyển động. DẠNG TOÁN 4 . ỨNG DỤNG CỦA TÍCH PHÂN ĐỂ GIẢI MỘT SỐ BÀI TOÁN THỰC TẾ. Dạng 4.1. Bài toán liên quan đến diện tích. Dạng 4.2. Bài toán liên quan đến thể tích. DẠNG TOÁN 5 . ỨNG DỤNG CỦA TÍCH PHÂN ĐỂ GIẢI MỘT SỐ BÀI TOÁN ĐẠI SỐ.
Ứng dụng tích phân trong các bài toán thực tế
Tài liệu gồm 77 trang, tuyển chọn và hướng dẫn giải các câu hỏi và bài toán trắc nghiệm chủ đề ứng dụng tích phân trong các bài toán thực tế, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 3 (nguyên hàm, tích phân và ứng dụng) và ôn thi tốt nghiệp THPT Quốc gia môn Toán năm học 2020 – 2021. Mục lục tài liệu ứng dụng tích phân trong các bài toán thực tế: A. Bài toán thực tế về vận tốc quãng đường (Trang 3). B. Bài toán thực tế về diện tích (Trang 23). C. Bài toán thực tế về thể tích (Trang 51).
Chuyên đề nguyên hàm, tích phân và ứng dụng - Nguyễn Trọng
Tài liệu gồm 36 trang, được biên soạn bởi thầy giáo Nguyễn Trọng, tóm tắt lý thuyết, ví dụ minh họa và bài tập trắc nghiệm chuyên đề nguyên hàm, tích phân và ứng dụng thuộc chương trình Giải tích 12 chương 3. Mục lục chuyên đề nguyên hàm, tích phân và ứng dụng – Nguyễn Trọng: Bài 1 . Nguyên hàm. + Dạng 1. Định nghĩa, tính chất và nguyên hàm cơ bản. a. Ví dụ minh họa. b. Bài tập áp dụng. + Dạng 2. Phương pháp đổi biến. a. Ví dụ minh họa. b. Bài tập áp dụng. + Dạng 3. Nguyên hàm từng phần. a. Ví dụ minh họa. b. Bài tập áp dụng. Bài 2 . Tích phân. + Dạng 1. Tích phân dùng định nghĩa, tính chất. a. Ví dụ minh họa. b. Bài tập áp dụng. + Dạng 2. Tích phân đổi biến số. 1. Đổi biến số dạng 1. a. Ví dụ minh họa. b. Bài tập áp dụng. 2. Đổi biến số dạng 2. a. Ví dụ minh họa. b. Bài tập áp dụng. + Dạng 3. Tích phân từng phần. 1. Dạng 1. $\int_\alpha ^\beta f \left( x \right)\left[ {\begin{array}{*{20}{l}} {\sin ax}\\ {\cos ax}\\ {{e^{ax}}} \end{array}} \right]dx$. a. Ví dụ minh họa. b. Bài tập áp dụng. 2. Dạng 2. $\int_a^\beta f \left( x \right)\ln \left( {ax} \right)dx$. a. Ví dụ minh họa. b. Bài tập áp dụng. 3. Dạng 3. $\int_\alpha ^\beta {{e^{ax}}} \left[ {\begin{array}{*{20}{l}} {\sin ax}\\ {\cos ax} \end{array}} \right]dx$. a. Ví dụ minh họa. b. Bài tập áp dụng. Bài 3 . Ứng dụng của tích phân trong hình học. + Dạng 1. Ứng dụng của tích phân tính diện tích hình phẳng. a. Ví dụ minh họa. b. Bài tập áp dụng. + Dạng 2. Ứng dụng của tích phân tính thể tích. a. Ví dụ minh họa. b. Bài tập áp dụng.