Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Đồng Nai

Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Đồng Nai Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Đồng Nai Đề thi tuyển sinh môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT Đồng Nai Đề thi tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 của sở GD&ĐT Đồng Nai có đặc điểm nổi bật là gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 150 phút. Trích dẫn nội dung các câu hỏi trong đề tuyển sinh môn Toán (chuyên) năm 2020 – 2021: Trong mặt phẳng cho 1889 điểm thỏa mãn với 3 điểm bất kỳ tạo thành 3 đỉnh của một tam giác có diện tích nhỏ hơn 1. Chứng minh trong các điểm đã cho tồn tại 237 điểm cùng nằm bên trong hoặc trên cạnh của một tam giác có diện tích nhỏ hơn 1/2. Có bao nhiêu cách bỏ 5 cây bút khác màu gồm xanh, đen, tím, đỏ, hồng vào 5 hộp đựng bút khác màu gồm xanh, đen, tím, đỏ, hồng sao cho mỗi hộp chỉ có một bút và màu bút khác với màu hộp? Cho tam giác nhọn ABC nội tiếp đường tròn (O) có hai đường cao BE, CF cắt nhau tại trực tâm H, biết AB < AC. Chứng minh các điều kiện sau: Tứ giác ALMO nội tiếp đường tròn, và chứng minh LD là tiếp tuyến của (O). MH vuông góc với AK, suy ra KH vuông góc với AM. Ba điểm A, N, D thẳng hàng. Đề thi tuyển sinh này không chỉ đánh giá kiến thức mà còn đòi hỏi sự linh hoạt, logic và khả năng suy luận của thí sinh. Hy vọng các em sẽ tự tin và thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh chuyên môn Toán (chung) năm 2023 2024 sở GD ĐT Quảng Nam
Nội dung Đề tuyển sinh chuyên môn Toán (chung) năm 2023 2024 sở GD ĐT Quảng Nam Bản PDF - Nội dung bài viết Đề tuyển sinh chuyên môn Toán (chung) năm 2023-2024 sở GD ĐT Quảng Nam Đề tuyển sinh chuyên môn Toán (chung) năm 2023-2024 sở GD ĐT Quảng Nam Sytu xin gửi đến quý thầy cô và các em học sinh Đề tuyển sinh chuyên môn Toán (chung) năm 2023-2024 sở Giáo dục và Đào tạo tỉnh Quảng Nam. Kỳ thi sẽ diễn ra vào ngày 06-08/06/2023. Dưới đây là một số câu hỏi trong đề thi: 1. Xác định hàm số y = ax + b biết đồ thị của nó đi qua điểm A(0;-3) và cắt đường thẳng (d): y = 2x - 1 tại điểm B với hoành độ bằng 4. 2. Tìm giá trị của tham số m sao cho phương trình x^2 - 4x + 2m + 1 = 0 có hai nghiệm phân biệt x1, x2 thỏa mãn x1^2 + (x1 + x2)x2 = 4m^2 + 3. 3. Cho nửa đường tròn tâm O có đường kính AB và điểm M tùy ý trên nửa đường tròn. Trên đoạn thẳng MB lấy điểm H, và đường thẳng đi qua H vuông góc với AB tại K cắt nửa đường tròn tại E và đường thẳng AM tại I. Chứng minh các điều sau: - Tứ giác AMHK nội tiếp đường tròn. - KE^2 = KA.KB = KI.KH. - Ba điểm B, N, I thẳng hàng và tiếp tuyến của nửa đường tròn tại N đi qua trung điểm của đoạn thẳng IH. Hy vọng rằng đề thi sẽ giúp các em chuẩn bị tốt cho kỳ thi tuyển sinh vào lớp 10 chuyên môn Toán (chung) năm 2023-2024. Chúc các em thành công!
Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Kon Tum
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Kon Tum Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2023-2024 sở GD ĐT Kon Tum Đề thi tuyển sinh môn Toán (chuyên) năm 2023-2024 sở GD ĐT Kon Tum Chúng tôi xin giới thiệu đến các thầy cô và các em học sinh Đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2023-2024 của Sở Giáo dục và Đào tạo UBND tỉnh Kon Tum. Kỳ thi này sẽ diễn ra vào ngày 04 tháng 06 năm 2023. Đề thi bao gồm các câu hỏi sau: 1. Trên mặt phẳng tọa độ Oxy, cho đường thẳng d: y = (m^2 + 2)x + 3 (với m là tham số). Gọi A, B lần lượt là giao điểm của d với trục hoành Ox, trục tung Oy. Hãy tìm giá trị của m để diện tích tam giác OAB bằng 2. 2. Cho phương trình: x^2 - (m + 5)x + 3m + 4 = 0 (với m là tham số). Tìm giá trị của m sao cho phương trình có hai nghiệm x1, x2 là độ dài hai cạnh góc vuông của một tam giác vuông có độ dài cạnh huyền bằng 5. 3. Cho tam giác ABC có góc C là góc tù. Giả sử các đường phân giác trong và phân giác ngoài của góc A của tam giác ABC lần lượt cắt đường thẳng BC tại D, E sao cho AD = AE. Chứng minh rằng AB^2 + AC^2 = 4R^2, với R là bán kính đường tròn ngoại tiếp tam giác ABC. Hy vọng rằng các em học sinh sẽ nắm vững kiến thức và kiểm tra tốt trong kỳ thi tuyển sinh sắp tới.
Đề tuyển sinh môn Toán năm 2023 2024 trường THPT chuyên Hà Tĩnh
Nội dung Đề tuyển sinh môn Toán năm 2023 2024 trường THPT chuyên Hà Tĩnh Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2023 - 2024 trường THPT chuyên Hà Tĩnh Đề tuyển sinh môn Toán năm 2023 - 2024 trường THPT chuyên Hà Tĩnh Xin chào quý thầy cô và các em học sinh! Hôm nay, Sytu xin giới thiệu đến quý vị đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2023 - 2024 của trường THPT chuyên Hà Tĩnh, tỉnh Hà Tĩnh. Kỳ thi sẽ diễn ra vào sáng thứ Tư, ngày 07 tháng 06 năm 2023. Trích dẫn một số câu hỏi từ Đề tuyển sinh lớp 10 môn Toán năm 2023 - 2024 trường THPT chuyên Hà Tĩnh: + Đề bài 1: Xét đường tròn (O) có đường kính AB cố định, điểm C chạy trên đường tròn (O) sao cho C không trùng với A và B. Tiếp tuyến của đường tròn (O) tại A và C cắt nhau tại điểm M. MB cắt AC tại F và cắt đường tròn (O) tại E (E khác B). Hãy chứng minh tam giác OEM đồng dạng với tam giác BHM. + Đề bài 2: Cho các số thực a, b, c thỏa mãn a > b > c, ab + bc + ca > 0 và a + b + c = 1. Tìm giá trị nhỏ nhất của biểu thức P = 1/(a - b) + 1/(b - c) + 1/(a - c) + 5/2(ab + bc + ca). + Đề bài 3: Xét ba số chính phương x, y, z. Chứng minh rằng (x + 1)(y + 1)(z + 1) luôn viết được dưới dạng tổng của hai số chính phương. Các em hãy thực hiện các bài toán một cách cẩn thận và logic để đạt được kết quả tốt nhất trong kỳ thi sắp tới. Chúc các em thành công!
Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Bắc Ninh
Nội dung Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Bắc Ninh Bản PDF - Nội dung bài viết Đề thi tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GD&ĐT Bắc Ninh Đề thi tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GD&ĐT Bắc Ninh Chào mừng đến với đề thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2023 - 2024 sở Giáo dục và Đào tạo tỉnh Bắc Ninh. Đề thi sẽ diễn ra vào thứ Ba ngày 06 tháng 06 năm 2023, bao gồm câu hỏi trắc nghiệm và lời giải chi tiết tự luận để giúp các em học sinh chuẩn bị tốt nhất cho kỳ thi quan trọng này. Câu hỏi 1: Cho đường tròn có tâm O, đường kính BC. Trên đường tròn lấy điểm A cố định (A khác B, C) và điểm D thay đổi trên cung nhỏ AC (D khác A, C). Kẻ AH vuông góc với BC (H thuộc BC). Hai đường thẳng BD và AH cắt nhau tại I. Hãy chứng minh rằng tứ giác IHCD là tứ giác nội tiếp. Câu hỏi 2: Chứng minh rằng AB² = BI.BD, với điểm M trên đoạn thẳng BC sao cho BM = AB. Chứng minh rằng tâm đường tròn ngoại tiếp tam giác MID luôn nằm trên một đường thẳng cố định khi D thay đổi trên cung nhỏ AC. Câu hỏi 3: Một phòng họp có 165 ghế ngồi được xếp thành các hàng, mỗi hàng có số ghế bằng nhau. Ban tổ chức thêm 1 hàng ghế và mỗi hàng ghế phải xếp nhiều hơn 2 ghế mới đủ chỗ ngồi cho 208 người tham dự. Hỏi lúc đầu, phòng họp có bao nhiêu hàng ghế và mỗi hàng ghế có bao nhiêu ghế? Câu hỏi 4: Cho ba đường thẳng đôi một phân biệt (d1) : y = x + 2; (d2) : y = 2x + 1; (d3) : y = (m² + 1)x + m (với m là tham số). Tìm giá trị của m để ba đường thẳng trên cùng đi qua một điểm. Chúc các em học sinh chuẩn bị và làm bài tốt! Hy vọng đây sẽ là cơ hội để thể hiện kiến thức và kỹ năng của mình trong môn Toán.