Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tổng hợp kiến thức cơ bản lớp 9 môn Toán

Nội dung Tổng hợp kiến thức cơ bản lớp 9 môn Toán Bản PDF - Nội dung bài viết Tổng hợp kiến thức cơ bản lớp 9 môn ToánPHẦN 1: ĐẠI SỐPHẦN II – HÌNH HỌC Tổng hợp kiến thức cơ bản lớp 9 môn Toán Để giúp học sinh lớp 9 tra cứu nhanh các kiến thức cơ bản môn Toán, Sytu đã tổng hợp tài liệu hữu ích này. Tài liệu gồm 17 trang bao gồm lý thuyết, các dạng toán và cách giải, nhằm giúp học sinh nắm vững chương trình Toán lớp 9 và chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán. PHẦN 1: ĐẠI SỐ Bao gồm kiến thức cần nhớ về điều kiện để căn thức có nghĩa, các công thức biến đổi căn thức, hàm số y = ax + b, hàm số y = ax^2, vị trí tương đối của hai đường thẳng, xét vị trí tương đối của đường thẳng và đường cong, phương trình bậc hai, hệ thức Vi-et và cách giải bài toán bằng phương trình, hệ phương trình. Các dạng bài tập bao gồm: Rút gọn biểu thức, bài toán tính toán, chứng minh đẳng thức và bất đẳng thức, giải phương trình, bất phương trình, giải phương trình vô tỉ, giải phương trình chứa dấu giá trị tuyệt đối, tìm giá trị lớn nhất và nhỏ nhất của biểu thức, và các bài toán liên quan đến hàm số. PHẦN II – HÌNH HỌC Chỉ cần nhớ hệ thức lượng trong tam giác vuông, tỉ số lượng giác của góc nhọn, và các hệ thức khác trong tam giác. Bên cạnh đó, cần hiểu về đường tròn, tiếp tuyến và góc với đường tròn, độ dài đường và cung tròn, diện tích hình tròn và hình quạt tròn, các loại đường tròn và hình không gian, tứ giác nội tiếp. Các dạng bài tập trong phần này bao gồm chứng minh các đẳng thức hình học, tam giác, đường thẳng, đường tròn đồng quy và đồng dạng, tiếp tuyến của đường tròn, và tính toán độ dài cạnh và góc của các hình học.

Nguồn: sytu.vn

Đọc Sách

Tài liệu Toán 9 chủ đề căn bậc ba
Tài liệu gồm 20 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề căn bậc ba trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. I. Căn bậc ba. II. Căn bậc n. B. Bài tập và các dạng toán. Dạng 1: Thực hiện phép tính có chứa căn bậc ba. Dạng 2: Khử mẫu thức chứa căn bậc ba. Dạng 3: So sánh các căn bậc ba. Dạng 4: Giải phương trình chứa căn bậc ba. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề căn bậc hai
Tài liệu gồm 25 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề căn bậc hai trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Khái niệm căn bậc hai. 2. Khái niệm về căn bậc hai số học. 3. So sánh các căn bậc hai số học. B. Bài tập áp dụng và các dạng toán. Dạng 1 : Tìm căn bậc hai và căn bậc hai số học của một số. Cách giải: Ta sử dụng các kiến thức sau: – Nếu a > 0 thì các căn bậc hai của a là ±a. – Căn bậc hai số học của a là a. – Nếu a = 0 thì căn bậc hai của a và căn bậc hai số học của a cùng bằng 0. – Nếu a < 0 thì a không có căn bậc hai và do đó không có căn bậc hai số học. Dạng 2 : Tìm số có căn bậc hai số học là một số cho trước. Cách giải: Với số thực a ≥ 0 cho trước, ta có 2 a chính là số có căn bậc hai số học bằng a. Dạng 3 : Tính giá trị của biểu thức chứa căn bậc hai. Cách giải: Ta sử dụng kiến thức: Với số a ≥ 0 ta có 2 2 a aa a. Dạng 4 : So sánh các căn bậc hai số học. Cách giải: Với: a b ab a b. Dạng 5 : Tìm giá trị của x thỏa mãn điều kiện cho trước. Cách giải: Ta sử dụng chú ý sau: 2 2 xa x a 8. Với số a ≥ 0 ta có: 2 xa xa. Dạng 6 : Chứng minh một số là số vô tỷ. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề căn thức bậc hai và hằng đẳng thức $sqrt A2 left A right$
Tài liệu gồm 25 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề căn thức bậc hai và hằng đẳng thức $\sqrt {A^2} = \left| A \right|$ trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Căn thức bậc hai. a. Định nghĩa: Với A là một biểu thức đại số thì A được gọi là căn thức bậc hai của A và A gọi là biểu thức lấy căn hay là biểu thức dưới dấu căn. b. A có nghĩa (hay xác định) khi 1 A 0 A ⇒ có nghĩa khi A > 0. Ví dụ: 3x có nghĩa khi 30 0 x x. 2. Hằng đẳng thức. Ví dụ 1: 2 2 12 12 12. Ví dụ 2: Rút gọn biểu thức sau: 2 (2) x với x ≥ 2. B. Bài tập và các dạng toán. Dạng 1: Tìm điều kiện để biểu thức chứa căn có nghĩa. Dạng 2: Tính giá trị của biểu thức. Dạng 3: Rút gọn các biểu thức chứa biến. Dạng 4: giải phương trình. Dạng 5: Tìm GTLN, GTNN của biểu thức. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.
Tài liệu Toán 9 chủ đề liên hệ giữa phép chia và phép khai phương
Tài liệu gồm 14 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề liên hệ giữa phép chia và phép khai phương trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Định lý: Với A B 0 0 thì A A B B. 2. Quy tắc khai phương một thương: Muốn khai phương A B (với A B 0 0), ta khai phương A khai phương B rồi lấy thương của hai kết quả. Ta có: 0 0 A A A B. 3. Quy tắc chia các căn bậc hai: Muốn chia căn bậc hai của số A ≥ 0 cho căn bậc hai của số B > 0, ta có thể chia A cho B rồi khai phương kết quả đó 0 0 A A A B. B. Bài tập và các dạng toán. Dạng 1 : Thực hiện phép tính. Cách giải: Áp dụng công thức khai phương một thương. Dạng 2 : Rút gọn biểu thức. Cách giải: Áp dụng quy tắc khai phương một thương. Dạng 3 : Giải phương trình. Cách giải: Khi giải phương trình chứa căn thức, luôn cần chú ý đến các điều kiện đi kèm. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.