Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 9 tháng 01 năm 2024 trường THCS Ngọc Lâm Bồ Đề - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 tháng 01 năm 2024 trường THCS Ngọc Lâm và THCS Bồ Đề, quận Long Biên, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Ba ngày 16 tháng 01 năm 2024. Trích dẫn Đề khảo sát Toán 9 tháng 01 năm 2024 trường THCS Ngọc Lâm & Bồ Đề – Hà Nội : + Giải bài toán bằng cách lập phương trình: Giá tiền một chiếc bếp từ đôi và một chiếc nồi chiên hơi nước ban đầu tổng cộng là 21 triệu đồng. Nhân dịp sắp đến tết nguyên đán Giáp Thìn 2024, cửa hàng giảm giá bếp từ đôi 15% và giảm giá nồi chiên hơi nước 10% so với giá ban đầu nên bác An đi mua hai sản phẩm này chỉ hết 18,3 triệu đồng. Tính giá tiền một chiếc bếp từ đôi và một nồi chiên hơi nước lúc ban đầu khi chưa giảm giá? + Một cầu thủ sút bóng bị va vào góc trên bên phải của cầu môn và dội ngược trở lại. Biết cầu môn cao 2,44m và khoảng cách từ vị trí sút bóng đến chân cầu môn là 25m. Tính góc tạo bởi đường đi của bóng so với mặt đất (số đo góc làm tròn đến phút). + Cho đường tròn (O; R) và một điểm M cố định nằm ngoài đường tròn (O). Từ M kẻ các tiếp tuyến MA, MB tới (O) (A, B là các tiếp điểm), MO cắt AB tại H. Một đường thẳng d thay đổi đi qua M nhưng không đi qua O cắt đường tròn (O) tại hai điểm N, P (N nằm giữa M và P). Gọi I là trung điểm của NP. a) Chứng minh bốn điểm M, A, I, O cùng thuộc một đường tròn. b) Chứng minh tích OH.OM không đổi. c) Tiếp tuyến của (O) tại N và P cắt nhau tại F. Chứng minh IOM đồng dạng HOF và điểm F chuyển động trên một đường thẳng cố định khi đường thẳng d quay quanh M mà vẫn thỏa mãn các yêu cầu đề bài.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát đầu năm Toán 9 năm 2022 - 2023 trường THCS Xuân Đỉnh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng đầu năm môn Toán 9 năm học 2022 – 2023 trường THCS Xuân Đỉnh, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 29 tháng 09 năm 2022.
Đề khảo sát đầu năm Toán 9 năm 2022 - 2023 trường THCS Nam Từ Liêm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng đầu năm môn Toán 9 năm học 2022 – 2023 trường THCS Nam Từ Liêm, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Sáu ngày 07 tháng 10 năm 2022.
Đề kiểm tra Toán 9 tháng 9 năm 2022 hệ thống giáo dục Archimedes School - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng định kì môn Toán 9 tháng 9 năm 2022 hệ thống giáo dục Archimedes School, thành phố Hà Nội. Trích dẫn Đề kiểm tra Toán 9 tháng 9 năm 2022 hệ thống giáo dục Archimedes School – Hà Nội : + Hãy tính chiều cao của tháp Eiffel mà không cần lên tận đỉnh tháp khi biết góc tạo bởi tia nắng mặt trời với mặt đất là 74° và bóng của tháp trên mặt đất lúc đó là 86m (làm tròn kết quả tới hàng đơn vị). + Cho hàm số bậc nhất: y = (m + 1)x + 3 (d) với m khác -1. a) Vẽ đồ thị hàm số tại m = 1. b) Tìm m để đồ thị hàm số trên đi qua A(-1;-2). c) Tìm m để khoảng cách từ O(0;0) đến đường thẳng (d) bằng 3. + Cho nửa đường tròn (O), đường kính AB. Gọi C là điểm bất kì trên nửa đường tròn (O) (C khác A, C khác B). Từ C vẽ tia Ox là tiếp tuyến với nửa đường tròn (O). Từ O vẽ đường thẳng vuông góc với dây AC cắt tia Ox tại K. 1) Chứng minh KA là tiếp tuyến của nửa đường tròn (O). 2) Chứng minh bốn điểm K, A, O, C cùng thuộc một đường tròn. 3) Gọi H là hình chiếu vuông góc của C trên AB, D là điểm đối xứng với A qua C. I là trung điểm của CH. Gọi E là giao điểm của HD và BI. Chứng minh: HE.HD =HC2.
Đề kiểm tra chất lượng Toán 9 tháng 9 năm 2022 trường THCS Cầu Diễn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng môn Toán 9 tháng 9 năm học 2022 – 2023 trường THCS Cầu Diễn, quận Nam Từ Liêm, thành phố Hà Nội. Trích dẫn Đề kiểm tra chất lượng Toán 9 tháng 9 năm 2022 trường THCS Cầu Diễn – Hà Nội : + Giải bài toán bằng cách lập phương trình: Một tổ sản xuất theo kế hoạch mỗi ngày phải làm được 18 sản phẩm. Nhưng thực tế do cải tiến kĩ thuật, mỗi ngày tổ đã làm được thêm 4 sản phẩm nên đã hoàn thành công việc trước 3 ngày và còn vượt mức 14 sản phẩm. Tính số sản phẩm tổ đó phải làm theo kế hoạch. + Cho tam giác MNP vuông tại M có đường cao MH; HN = 9cm; HP = 16cm. a) Tính: MN; MP; MH? b) Gọi I, K lần lượt là hình chiếu vuông góc của H lên MN, MP. Tính IK? c) Tính diện tích tứ giác NIKP? + Cho các số thực dương a, b thỏa mãn: ab > 202la + 2022b. Chứng minh bắt đẳng thức: a + b > (2021 + 2022)^2.