Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề các bài toán về tứ giác bồi dưỡng học sinh giỏi Toán 8

Tài liệu gồm 76 trang, được biên soạn bởi thầy giáo Trần Đình Hoàng, hướng dẫn phương pháp giải các dạng toán chuyên đề các bài toán về tứ giác bồi dưỡng học sinh giỏi Toán 8. CHỦ ĐỀ 1: TỨ GIÁC 2. Dạng 1. Tính số đo góc của tứ giác 2. Dạng 2. So sánh các độ dài đoạn thẳng 5. CHỦ ĐỀ 2: HÌNH THANG – HÌNH THANG CÂN 11. Dạng 1. Bài tập về hình thang 11. Dạng 2. Bài tập về hình thang cân 13. CHỦ ĐỀ 3: ĐƯỜNG TRUNG BÌNH CỦA TAM GIÁC, CỦA HÌNH THANG 20. Dạng 1. Bài tập về đường trung bình của tam giác 20. Dạng 2. Bài tập về đường trung bình của hình thang 26. CHỦ ĐỀ 3: HÌNH BÌNH HÀNH 29. Dạng 1. Bài tập vận dụng tính chất hình bình hành 29. Dạng 2. Nhận biết hình bình hành 33. Dạng 3. Dựng hình bình hành 34. CHỦ ĐỀ 3: HÌNH CHỮ NHẬT 35. Dạng 1. Bài tập vận dụng tính chất và dấu hiệu nhận biết hình chữ nhật 35. Dạng 2. Tính chất đường trung tuyến của tam giác vuông 39. Dạng 3. Đường thẳng song song với một đường thẳng cho trước 41. CHỦ ĐỀ 6: HÌNH THOI VÀ HÌNH VUÔNG 43. Dạng 1. Bài tập vận dụng tính chất và dấu hiệu nhận biết hình thoi 43. Dạng 2. Bài tập vận dụng tính chất và dấu hiệu nhận biết hình vuông 45. CHỦ ĐỀ 7: ĐỐI XỨNG TRỤC – ĐỐI XỨNG TÂM 50. Dạng 1. Bài tập vận dụng đối xứng trục 50. Dạng 2. Bài tập vận dụng đối xứng tâm 53. Chủ đề 8.HÌNH PHỤ ĐỂ GIẢI TOÁN TRONG CHƯƠNG TỨ GIÁC 55. A. Kiến thức cần nhớ 55. B. Bài tập vận dụng 56. CHỦ ĐỀ 8: TOÁN QUỸ TÍCH 65. A. Kiến thức cần nhớ 65. B. Bài tập áp dụng 65.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề diện tích đa giác
Nội dung Chuyên đề diện tích đa giác Bản PDF - Nội dung bài viết Chuyên đề diện tích đa giácTóm tắt lý thuyết:Bài tập và các dạng toán:A. Các dạng bài minh họa:B. Phiếu bài tự luyện: Chuyên đề diện tích đa giác Tài liệu này bao gồm 06 trang, cung cấp lý thuyết cơ bản về cách tính diện tích đa giác, bao gồm trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán phổ biến. Ngoài ra, tài liệu cũng tuyển chọn các bài tập từ cơ bản đến nâng cao về chuyên đề diện tích đa giác, kèm theo đáp án và lời giải chi tiết. Đây là tài liệu hữu ích để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. Tóm tắt lý thuyết: Để tính diện tích đa giác, chúng ta thường chia đa giác đó thành các tam giác hoặc tứ giác để tính toán. Sau đó, tính tổng các diện tích tam giác hoặc tứ giác đó để có diện tích của đa giác ban đầu. Hoặc có thể tạo ra một đa giác mới chứa đa giác ban đầu và tính hiệu các diện tích để đạt được kết quả cuối cùng. Bài tập và các dạng toán: A. Các dạng bài minh họa: Dạng 1: Tính diện tích đa giác. Phương pháp giải: Đưa về tính tổng các diện tích hoặc hiệu các diện tích. Dạng 2: Tính diện tích của đa giác bất kỳ. Phương pháp giải: Đưa về tính tổng các diện tích hoặc hiệu các diện tích. Dạng 3: Dựng tam giác có diện tích bằng diện tích một đa giác. Phương pháp giải: Thường kẻ đường thẳng song song với một đường thẳng cho trước để tạo ra một tam giác mới có diện tích bằng diện tích một tam giác cho trước. B. Phiếu bài tự luyện: Bên cạnh đó, tài liệu cũng cung cấp phiếu bài tự luyện cho học sinh, giúp họ ôn tập và rèn luyện kỹ năng tính toán diện tích đa giác một cách hiệu quả.
Chuyên đề diện tích hình thoi
Nội dung Chuyên đề diện tích hình thoi Bản PDF - Nội dung bài viết Một bộ tài liệu chuyên về diện tích hình thoi Một bộ tài liệu chuyên về diện tích hình thoi Tài liệu này bao gồm 14 trang chứa thông tin chi tiết về diện tích hình thoi, được chia thành ba phần chính. Phần I: Kiến thức cơ bản Trong phần này, bạn sẽ được học về cách tính diện tích của tứ giác có hai đường chéo vuông góc và diện tích hình thoi. Đặc biệt, bạn sẽ biết rằng diện tích hình thoi có thể tính bằng nửa tích hai đường chéo hoặc bằng tích của một cạnh với chiều cao. Phần II: Một số dạng bài tập Trong phần này, bạn sẽ được hướng dẫn cách giải các dạng bài tập phổ biến như tính diện tích của tứ giác có hai đường chéo vuông góc và tính diện tích hình thoi. Bạn cũng sẽ tìm hiểu cách tìm diện tích lớn nhất hoặc nhỏ nhất của một hình. Phần III: Phiếu bài tự luyện Phần cuối cùng cung cấp cho bạn một phiếu bài tập tự luyện để thực hành và kiểm tra kiến thức của mình. Đáp án và lời giải chi tiết sẽ giúp bạn hiểu rõ hơn và nâng cao kỹ năng giải bài tập về diện tích hình thoi.
Chuyên đề diện tích hình thang
Nội dung Chuyên đề diện tích hình thang Bản PDF - Nội dung bài viết Chuyên đề diện tích hình thang Chuyên đề diện tích hình thang Chuyên đề diện tích hình thang là tài liệu học tập bao gồm 08 trang, được thiết kế để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. Tài liệu này tóm tắt lý thuyết về trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán liên quan đến diện tích hình thang. Đầu tiên, tài liệu giải thích rằng diện tích hình thang bằng nửa tích của tổng hai đáy với chiều cao, cũng như diện tích hình bình hành bằng tích của một cạnh với chiều cao ứng với cạnh đó. Trong phần bài tập và các dạng toán, tài liệu cung cấp các bài tập từ cơ bản đến nâng cao về diện tích hình thang. Các dạng bài minh họa bao gồm: tính diện tích hình thang, tính diện tích hình bình hành, tìm vị trí của một điểm để thỏa mãn một đẳng thức về diện tích, tìm diện tích lớn nhất (nhỏ nhất) của một hình. Để giải các dạng toán này, học sinh sẽ được hướng dẫn cách sử dụng công thức tính diện tích, cũng như áp dụng các phương pháp giải quan trọng như sử dụng tính chất đường vuông góc ngắn hcm đường xiên. Ngoài ra, tài liệu còn cung cấp phiếu bài tự luyện để học sinh có thể tự rèn luyện và kiểm tra kiến thức của mình trong chuyên đề diện tích hình thang.
Chuyên đề diện tích tam giác
Nội dung Chuyên đề diện tích tam giác Bản PDF - Nội dung bài viết Chuyên đề diện tích tam giácTóm tắt lý thuyếtBài tập và các dạng toánPhiếu bài tự luyện Chuyên đề diện tích tam giác Tài liệu này bao gồm 11 trang, cung cấp kiến thức về diện tích tam giác cần đạt, phân loại và hướng dẫn giải các dạng bài tập liên quan đến chuyên đề này. Nội dung tài liệu được tóm tắt từ lý thuyết về trọng tâm tam giác, cách tính diện tích tam giác bằng nửa tích của một cạnh với chiều cao tương ứng. Tài liệu cũng tuyển chọn các bài tập từ cơ bản đến nâng cao, đồng thời cung cấp đáp án và lời giải chi tiết để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. Tóm tắt lý thuyết Diện tích tam giác có thể tính bằng nửa tích của một cạnh nhân với chiều cao tương ứng. Tài liệu cũng chú ý đến tỉ số diện tích của hai tam giác khi có một cạnh hoặc một đường cao bằng nhau. Bài tập và các dạng toán Tài liệu cung cấp các dạng bài tập minh họa như: Tính toán, chứng minh về diện tích tam giác; Sử dụng công thức tính diện tích để tìm độ dài đoạn thẳng; Chứng minh hệ thức về diện tích; Tìm vị trí điểm thỏa mãn đẳng thức về diện tích; Tìm diện tích lớn nhất hoặc nhỏ nhất của một hình. Phương pháp giải các dạng toán được hướng dẫn chi tiết, từ việc sử dụng công thức tính diện tích đến phát hiện mối quan hệ giữa các yếu tố trong tam giác. Điều này giúp học sinh nắm vững kiến thức và áp dụng linh hoạt trong giải các bài tập. Phiếu bài tự luyện Tài liệu cuối cùng cung cấp phiếu bài tập tự luyện để học sinh có thể kiểm tra kiến thức và rèn luyện kỹ năng giải bài tập liên quan đến diện tích tam giác. Đây là cơ hội cho học sinh tự kiểm tra và nâng cao khả năng giải bài toán trong chuyên đề này.