Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 – 2020 trường THPT Phú Lương – Thái Nguyên

Nội dung Đề thi học kì 2 (HK2) lớp 12 môn Toán năm 2019 – 2020 trường THPT Phú Lương – Thái Nguyên Bản PDF Ngày … tháng 06 năm 2020, trường THPT Phú Lương, tỉnh Thái Nguyên tổ chức kỳ thi kiểm tra đánh giá chất lượng môn Toán lớp 12 giai đoạn cuối học kì 2 năm học 2019 – 2020, đánh dấu kết thúc một năm học với nhiều “biến động” do tình hình dịch bệnh. Đề thi học kì 2 Toán lớp 12 năm học 2019 – 2020 trường THPT Phú Lương – Thái Nguyên mã đề 122 gồm có 04 trang, đề được biên soạn theo dạng đề trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 32 câu, chiếm 08 điểm, phần tự luận gồm 04 câu, chiếm 02 điểm, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết các mã đề 122, 301, 125, 305. 1. TRẮC NGHIỆM + Định nghĩa nguyên hàm. + Phương pháp tính nguyên hàm. + Tính chất tích phân. + Tính chất tích phân. + Tích phân đổi biến số. + Phương pháp tính tích phân từng phần. + Tính diện tích hình phẳng, thể tích khối tròn xoay. + Tính tích phân hàm ẩn dựa vào định nghĩa, tính chất. + Tính tích phân hàm ẩn đổi biến hoặc từng phần. + Tìm môđun số phức hoặc điểm biểu diễn số phức. + Tìm số phức liên hợp. + Tìm tập hợp điểm biểu diễn số phức. + Tìm số phức nghịch đảo, phép chia hai số phức. + Tìm tập hợp điểm biểu diễn hình học của số phức. + Tìm điều kiện để hai số phức bằng nhau. + Giải phương trình bậc hai. + Tìm hình chiếu một điểm xuống các mặt phẳng tọa độ, hoặc các trục tọa độ, tìm tọa độ các phép toán vectơ, góc giữa hai vec tơ, độ dài đoạn thẳng, tích vô hướng, có hướng của hai vec tơ, điều kiện hai vec tơ vuông góc, cùng phương, ba điểm thẳng hàng. + Tìm tọa độ các phép toán vec tơ, góc giữa hai vec tơ, độ dài đoạn thẳng, tích vô hướng, có hướng của hai vec tơ, điều kiện hai vec tơ vuông góc, cùng phương, ba điểm thẳng hàng. [ads] + Tìm tâm và bán kính mặt cầu. + Viết phương trình mặt cầu. + Viết phương trình mặt phẳng (VTPT tìm được ngay), hoặc theo đoạn chắn. + Viết phương trình mặt phẳng đi qua ba điểm hoặc tìm VTPT qua tích có hướng. + Viết phương trình mặt phẳng dựa vào điều kiện cho trước (VTPT tìm thông qua các điều kiện song song vuông góc đường và mặt). + Viết phương trình mặt phẳng dựa vào điều kiện cho trước (VTPT tìm thông qua các điều kiện song song vuông góc đường và mặt). + Điểm thuộc đường thẳng. + Tìm một vec tơ chỉ phương của đương thẳng khi biết phương trình tham số. + Tìm một PTTS đường thẳng khi biết điểm và VTCP (phải kiểm tra hai điều kiện). + Viết phương trình đường thẳng dựa vào điều kiện cho trước (VTCP tìm dễ dàng). + Tìm tọa độ giao điểm hai đường thẳng, tìm điều kiện hai đường thẳng cắt nhau. + Chứng minh rằng hai đường thẳng chéo nhau. + Xét vị trí tương đối đường thẳng và mặt phẳng. + Viết phương trình đường thẳng. 2. TỰ LUẬN + Tính tích phân (đổi biến, hoặc từng phần). + Tìm số phức thỏa mãn điều kiện cho trước. + Viết phương trình đường thẳng hoặc mặt phẳng. + Tìm GTLN và GTNN của môđun số phức. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường THPT Trần Khai Nguyên - TP HCM
Nhằm giúp các em học sinh lớp 12 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 12 sắp tới, giới thiệu đến các em đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường THPT Trần Khai Nguyên, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán 12 năm 2019 – 2020 trường THPT Trần Khai Nguyên – TP HCM : + Gọi M và N lần lượt là các điểm biểu diễn của z1, z2 trên mặt phẳng tọa độ, I là trung điểm MN, O là gốc tọa độ (ba điểm O, M, N phân biệt và không thẳng hàng). Mệnh đề nào sau đây là đúng? + Trong không gian với hệ tọa độ Oxyz, cho vật thể (H) giới hạn bởi hai mặt phẳng có phương trình x = a và x = b (a < b). Gọi S(x) là diện tích thiết diện của (H) bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là x, với a =< x =< b. Giả sử hàm số y = S(x) liên tục trên đoạn [a;b]. Khi đó, thể tích V của vật thể (H) được cho bởi công thức? + Cho hai mặt cầu (S1), (S2) có cùng bán kính R thỏa mãn tính chất: tâm của (S1) nằm trên mặt cầu (S2) và ngược lại. Tính thể tích phần chung V của hai khối cầu tạo bởi (S1) và (S2).
Đề thi HK2 Toán 12 năm học 2019 - 2020 trường THPT Tân Phú - Đồng Nai
Ngày … tháng 06 năm 2020, trường THPT Tân Phú, huyện Định Quán, tỉnh Đồng Nai tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 12 giai đoạn cuối học kỳ 2 năm học 2019 – 2020. Đề thi HK2 Toán 12 năm học 2019 – 2020 trường THPT Tân Phú – Đồng Nai gồm có 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HK2 Toán 12 năm học 2019 – 2020 trường THPT Tân Phú – Đồng Nai : + Cho hình vuông ABCD cạnh a. Trên hai tia Bx, Dy vuông góc với mặt phẳng (ABCD) và cùng chiều lần lượt lấy hai điểm M và N sao cho BM = a/4; DN = 2a. Tính góc x giữa hai mặt phẳng (AMN) và (CMN). [ads] + Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): 2x + y – 2z + m = 0 và mặt cầu (S): x^2 + y^2 + z^2 – 2x + 4y – 6z – 2 = 0. Có bao nhiêu giá trị nguyên của m để mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn (T) có chu vi bằng 4√3. + Trong mặt phẳng tọa độ Oxy. Gọi A, B, C lần lượt là các điểm biểu diễn số phức -1 – 2i, 4 – 4i, -3i. Số phức biểu diễn trọng tâm tam giác ABC là?
Đề thi HK2 Toán 12 năm 2019 - 2020 trường THPT Phan Ngọc Hiển - Cà Mau
Thứ Năm ngày 18 tháng 06 năm 2020, trường THPT Phan Ngọc Hiển, huyện Năm Căn, tỉnh Cà Mau tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 12 giai đoạn cuối học kỳ 2 năm học 2019 – 2020. Đề thi HK2 Toán 12 năm 2019 – 2020 trường THPT Phan Ngọc Hiển – Cà Mau mã đề 201 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 201, 302, 403, 504, 601, 702, 803, 904. Trích dẫn đề thi HK2 Toán 12 năm 2019 – 2020 trường THPT Phan Ngọc Hiển – Cà Mau : + Tập hợp tất cả các điểm biểu diễn các số phức z thỏa mãn: |z – 2 + 3i| = 2 là đường tròn có tâm I và bán kính R lần lượt là? [ads] + Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ bên. Hình phẳng được đánh dấu trong hình vẽ bên có diện tích là? + Gọi z1 và z2 là hai nghiệm của phương trình 2z^2 + 6z + 5 = 0 trong đó z2 có phần ảo âm. Phần thực và phần ảo của số phức z1 + 3z2 lần lượt là?
Đề thi học kỳ 2 Toán 12 năm 2019 - 2020 trường THPT Yên Lạc 2 - Vĩnh Phúc
Nhằm kiểm tra đánh giá kết thúc nội dung chương trình Toán 12, ngày … tháng 06 năm 2020, trường THPT Yên Lạc 2, tỉnh Vĩnh Phúc tổ chức kỳ thi học kỳ 2 Toán 12 năm học 2019 – 2020. Đề thi học kỳ 2 Toán 12 năm 2019 – 2020 trường THPT Yên Lạc 2 – Vĩnh Phúc mã đề 152 gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài thi là 90 phút, đề thi có đáp án mã đề 152, 272, 334, 476, 597, 674, 782, 859. Trích dẫn đề thi học kỳ 2 Toán 12 năm 2019 – 2020 trường THPT Yên Lạc 2 – Vĩnh Phúc : + Gọi A là điểm biểu diễn số phức z, B là điểm biểu diễn số phức −z. Trong các khẳng định sau khẳng định nào sai? A. A và B đối xứng nhau qua trục hoành. B. A và B trùng gốc tọa độ khi z = 0. C. A và B đối xứng qua gốc tọa độ. D. Đường thẳng AB đi qua gốc tọa độ. + Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (a) đi qua điểm M(1;2;3) và cắt các trục Ox, Oy, Oz lần lượt tại A, B, C (khác gốc toạ độ O) sao cho M là trực tâm tam giác ABC. Mặt phẳng (a) có phương trình là? + Cho hai điểm A và B phân biệt. Tập hợp tâm những mặt cầu đi qua A và B là: A. trung điểm của đoạn thẳng AB. B. đường thẳng trung trực của AB. C. mặt phẳng song song với đường thẳng AB. D. mặt phẳng trung trực của đoạn thẳng AB.