Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi cuối học kì 1 (HK1) lớp 11 môn Toán năm 2020 2021 trường THPT Đông Hà Quảng Trị

Nội dung Đề thi cuối học kì 1 (HK1) lớp 11 môn Toán năm 2020 2021 trường THPT Đông Hà Quảng Trị Bản PDF Đề thi cuối kỳ 1 Toán lớp 11 năm 2020 – 2021 trường THPT Đông Hà – Quảng Trị được biên soạn theo hình thức 100% tự luận, đề gồm 01 trang với 06 bài toán, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi cuối kỳ 1 Toán lớp 11 năm 2020 – 2021 trường THPT Đông Hà – Quảng Trị : + Một lớp học có 18 học sinh nam và 20 học sinh nữ. Lớp trưởng chọn ngẫu nhiên 4 bạn tham gia cùng một trò chơi. Tính xác suất để sao cho: a. trong bốn bạn được chọn có 2 bạn nam, 2 bạn nữ. b. trong bốn bạn được chọn không có quá 3 bạn nam. + Cho hình chóp S.ABCD có đáy ABCD là hình thang với đáy lớn AB, gọi M là trung điểm của SA, E là điểm trên cạnh AB sao cho tứ giác AECD là hình bình hành, I là trung điểm của CE. Gọi (α) là mặt phẳng chứa IM và song song với SD. a. Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC). b. Tìm giao điểm N của đường thẳng AD và mặt phẳng (α). c. Giả sử tam giác SCD cân tại S. Chứng minh rằng thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (α) là một hình thang cân. + Từ tập A = {1; 2; 3; 4; 5; 6; 7; 8} có thể lập được bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau và chia hết cho 5?

Nguồn: sytu.vn

Đọc Sách

Phiếu khảo bài môn Toán 11 học kì 1 - Lê Văn Đoàn
Tài liệu gồm 77 trang, được biên soạn bởi thầy giáo Lê Văn Đoàn, tuyển tập phiếu khảo bài môn Toán 11 học kì 1. ĐẠI SỐ & GIẢI TÍCH 11 Phiếu 1.1. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 1. Phiếu 1.2. Tập xác định, giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác 3. Phiếu 2.1. Phương trình lượng giác cơ bản 5. Phiếu 2.2. Phương trình lượng giác cơ bản 7. Phiếu 3.1. Phương trình bậc hai theo một hàm số lượng giác 9. Phiếu 3.2. Phương trình bậc hai theo một hàm số lượng giác 11. Phiếu 4.1. Phương trình bậc nhất đối với sin và cosin (cổ điển) 13. Phiếu 4.2. Phương trình bậc nhất đối với sin và cosin (cổ điển) 15. Phiếu 5.1. Phương trình lượng giác đẳng cấp 17. Phiếu 5.2. Phương trình lượng giác đẳng cấp 19. Phiếu 6.1. Phương trình lượng giác đối xứng 21. Phiếu 6.2. Phương trình lượng giác đối xứng 23. Phiếu 7.1. Quy tắc đếm cơ bản 25. Phiếu 7.2. Quy tắc đếm cơ bản 27. Phiếu 8.1. Hoán vị, tổ hợp, chỉnh hợp 29. Phiếu 8.2. Hoán vị, tổ hợp, chỉnh hợp 31. Phiếu 8.3. Hoán vị, tổ hợp, chỉnh hợp 33. Phiếu 9.1. Nhị thức Newton 35. Phiếu 9.2. Nhị thức Newton 37. Phiếu 9.3. Nhị thức Newton 39. Phiếu 10.1. Xác suất 41. Phiếu 10.2. Xác suất 43. Phiếu 10.3. Xác suất 45. Phiếu 11.1. Cấp số cộng – Cấp số nhân 47. Phiếu 11.2. Cấp số cộng – Cấp số nhân 49. Phiếu 11.2. Cấp số cộng – Cấp số nhân 51. HÌNH HỌC 11 Phiếu 1.1. Tìm giao tuyến và giao điểm 53. Phiếu 1.2. Tìm giao tuyến và giao điểm 55. Phiếu 1.3. Tìm giao tuyến và giao điểm 57. Phiếu 2.1. Tìm thiết diện 59. Phiếu 2.2. Tìm thiết diện 60. Phiếu 3.1. Chứng minh ba điểm thẳng hàng 61. Phiếu 3.2. Chứng minh ba điểm thẳng hàng 62. Phiếu 4.1. Chứng minh hai đường thẳng song song 63. Phiếu 4.2. Chứng minh hai đường thẳng song song 64. Phiếu 5.1. Tìm giao tuyến song song 65. Phiếu 5.2. Tìm giao tuyến song song 67. Phiếu 6.1. Chứng minh đường thẳng song song với mặt phẳng 69. Phiếu 6.2. Chứng minh đường thẳng song song với mặt phẳng 71. Phiếu 7.1. Chứng minh mặt phẳng song song với mặt phẳng 73. Phiếu 7.2. Chứng minh mặt phẳng song song với mặt phẳng 75.