Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GDĐT Lào Cai

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Lào Cai; kỳ thi được diễn ra vào ngày 15 tháng 03 năm 2023; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 – 2023 sở GD&ĐT Lào Cai : + Trên bàn cờ vua kích thước 8 × 8 gồm 64 ô vuông con kích thước 1 x 1. Đặt ngẫu nhiên một quân Tốt vào một ô vuông con kích thước 1 x 1 trên bàn cờ. Tính xác suất để ô vuông con kích thước 1 x 1 mà con Tốt được đặt không có tâm nằm trên đường chéo của bàn cờ và cũng không có cạnh nào nằm trên cạnh của bàn cờ (hình vuông kích thước 8 × 8). + Lúc 6 giờ 30 phút sáng, anh Hùng điều khiển một xe gắn máy khởi hành từ thành phố A đến thành phố B. Khi đi được 3/4 quãng đường, xe bị hỏng nên anh Hùng dừng lại để sửa chữa. Sau 30 phút sửa xe, anh Hùng tiếp tục điều khiển xe gắn máy đó đi đến thành phố B với vận tốc nhỏ hơn vận tốc ban đầu 10 km/h. Lúc 10 giờ 24 phút sáng cùng ngày, anh Hùng đến thành phố B. Biết rằng quãng đường từ thành phố A đến thành phố B là 160 km và vận tốc của xe trên 3/4 quãng đường đầu không đổi và vận tốc của xe trên 1/4 quãng đường sau cũng không đổi. Hỏi anh Hùng dừng xe để sửa chữa lúc mấy giờ? + Cho tam giác nhọn ABC không cân nội tiếp đường tròn (O) (AB < AC). Tiếp tuyến tại A của đường tròn (O) cắt đường thẳng BC tại E. Từ E kẻ tuyến thứ hai tới đường tròn (O) tại D (D khác A); AD cắt EO tại Q; M là trung điểm của BC. a) Chứng minh 5 điểm A, E, D, M, O cùng thuộc một đường tròn và tứ giác BQOC nội tiếp một đường tròn. b) Chứng minh rằng tiếp tuyến tại B, tiếp tuyến tại C của đường tròn (O) và đường thẳng AD đồng quy tại một điểm. c) Kẻ đường cao AH của tam giác ABC (H thuộc BC); AD cắt BC tại K. Chứng minh HAK = MAO và KB/KC = AB2/AC2.

Nguồn: toanmath.com

Đọc Sách

Đề chọn học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Nghi Xuân - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển dự thi học sinh giỏi cấp tỉnh môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Nghi Xuân, tỉnh Hà Tĩnh. Trích dẫn Đề chọn học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Nghi Xuân – Hà Tĩnh : + Viết số 2023^2023 thành tổng của nhiều số tự nhiên. Tổng các lập phương của các số tự nhiên đó chia cho 6 dư bao nhiêu? + Tam giác ABC cân tại A, biết AB = 2cm và góc A bằng 36°. Tính BC. + Cho tam giác nhọn ABC (AB < AC). Ba đường cao AD, BE và CF cắt nhau tại H. Gọi I là giao điểm EF và AH. Đường thẳng qua I và song song với BC cắt AB, BE lần lượt tại P và Q. a. Chứng minh: AEF đồng dạng ABC. b.Chứng minh: IP = IQ. c. Gọi M là trung điểm của AH, chứng minh I là trực tâm của tam giác BMC.
Đề học sinh giỏi Toán 9 cấp huyện năm 2023 - 2024 phòng GDĐT Ba Vì - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Ba Vì, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 28 tháng 09 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 9 cấp huyện năm 2023 – 2024 phòng GD&ĐT Ba Vì – Hà Nội : + Cho tam giác ABC cân tại A có ABC = 𝛼. Gọi I là trung điểm của BC. Trên cạnh AB, AC lấy M, N sao cho MIN = 𝛼. Chứng minh rằng: a) Tam giác BMI đồng dạng với tam giác CIN. Từ đó suy ra BM.CN không đổi. b) NI là tia phân giác của MNC. + Cho tam giác ABC vuông tại A, điểm M nằm giữa B và C. Gọi D, E thứ tự là hình chiếu của M trên AC, AB a) Tìm vị trí của M để DE có độ dài nhỏ nhất. b) Tam giác ABC có thêm điều kiện gì để với mọi vị trí của M nằm giữa B và C thì các hình chữ nhật ADME có chu vi bằng nhau. + Cho a, b là các số nguyên, chứng minh rằng: 42 24 Q a b a b ab ab chia hết cho 6.
Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Lộc Hà - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển học sinh giỏi tỉnh môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Lộc Hà, tỉnh Hà Tĩnh; đề thi gồm 10 câu ghi kết quả và 03 câu tự luận; thời gian làm bài 120 phút. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Lộc Hà – Hà Tĩnh : + Cho tam giác ABC vuông tại A, đường cao AH. Biết AC = 26cm; BH = 2cm. Tính sin BAH. + Cho đường tròn (O;R). Hai dây AB và CD song song nhau. Biết AB = 16 cm, CD = 12 cm, khoảng cách giữa hai dây là 14 cm. Tính R. + Cho đường tròn (O;R) cố định và điểm M ở ngoài (O). Từ M vẽ các tiếp tuyến MA, MB và cát tuyến MCD (C nằm giữa M và D). Gọi I là trung điểm của CD, H là giao điểm của AB và OM, N là giao điểm của AB và CD. a) Chứng minh AM2 = MN.MI. b) Từ O vẽ đường thẳng song song với AB cắt MA, MB lần lượt tại P và Q. Xác định vị trí của M để diện tích tam giác MPQ có giá trị nhỏ nhất.
Đề HSG Toán 9 cấp huyện năm 2023 - 2024 phòng GDĐT Lập Thạch - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Lập Thạch, tỉnh Vĩnh Phúc. Trích dẫn Đề HSG Toán 9 cấp huyện năm 2023 – 2024 phòng GD&ĐT Lập Thạch – Vĩnh Phúc : + Cửa hàng bác Tuấn ở thị trấn Xuân Hòa huyện Lập Thạch chuyên bán cá thính (đặc sản của huyện Lập Thạch, tỉnh Vĩnh Phúc). Cửa hàng có hai hình thức đóng thùng, loại I mỗi thùng gồm 10 hộp cá thính và loại II mỗi thùng gồm 5 hộp cá thính. Trong tháng 9 vừa qua cửa hàng bán buôn được 60 thùng cá thính (gồm cả loại I và loại II) thu về tổng cộng 55 triệu đồng. Biết rằng giá bán mỗi thùng cá thính loại I tính theo triệu đồng là một số nguyên dương và gấp đôi giá bán mỗi thùng cá thính loại II. Hỏi giá bán mỗi thùng cá thính loại I là bao nhiêu triệu đồng? + Lần lượt lấy trên các cạnh AB, BC, CA của tam giác ABC các điểm P, M, N. Gọi S, S1, S2, S3 lần lượt là diện tích các tam giác ABC, APN, BMP, CMN. Chứng minh rằng: S1.S2.S3. + Cho một đa giác đều có 2023 đỉnh. Người ta ghi lên mỗi đỉnh của đa giác số 1 hoặc số 2. Biết rằng có 1013 số 1 và 1010 số 2 và các số trên 3 đỉnh liên tiếp bất kỳ không đồng thời bằng nhau. Hãy tính S là tổng của tất cả các tích ba số trên 3 đỉnh liên tiếp của đã giác trên.