Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh Toán (chuyên) 2022 2023 trường chuyên Lê Quý Đôn BR VT

Nội dung Đề tuyển sinh Toán (chuyên) 2022 2023 trường chuyên Lê Quý Đôn BR VT Bản PDF - Nội dung bài viết Đề thi tuyển sinh Toán (chuyên) 2022-2023 Trường chuyên Lê Quý Đôn BR VT Đề thi tuyển sinh Toán (chuyên) 2022-2023 Trường chuyên Lê Quý Đôn BR VT Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 tại trường THPT chuyên Lê Quý Đôn, tỉnh Bà Rịa – Vũng Tàu. Kỳ thi sẽ diễn ra vào ngày 09 tháng 06 năm 2022, đề thi bao gồm đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 Toán (chuyên) 2022 – 2023 trường chuyên Lê Quý Đôn – BR VT: + Cho tam giác ABC nhọn, AB AC nội tiếp đường tròn tâm O và có ba đường cao AD, BE, CF cắt nhau tại H. Gọi I, J lần lượt là trung điểm của AH và BC. a) Chứng minh rằng IJ vuông góc với EF và IJ song song với OA. b) Gọi K, Q lần lượt là giao điểm của EF với BC và AD. Chứng minh rằng QE = KE và QF = KF. c) Đường thẳng chứa tia phân giác của FHB cắt AB, AC lần lượt tại M và N. Tia phân giác của CAB cắt đường tròn ngoại tiếp tam giác AMN tại điểm P khác A. Chứng minh ba điểm H, P, J thẳng hàng. + Cho tam giác ABC cố định có diện tích S. Đường thẳng d thay đổi đi qua trọng tâm của tam giác ABC cắt các cạnh AB, AC lần lượt tại M, N. Gọi 1, 2 là diện tích các tam giác ABN và ACM. Hãy tìm giá trị nhỏ nhất của 1/2 + S/2. + Cho các số thực a, b, c, d thỏa mãn 2ac > bd. Chứng minh phương trình sau luôn có nghiệm: 2x^2 - ax + b = cx - dx.

Nguồn: sytu.vn

Đọc Sách

Đề thi thử vào lớp 10 môn Toán năm 2018 trường THPT Sơn Tây - Hà Nội
Đề thi thử vào lớp 10 môn Toán năm 2018 trường THPT Sơn Tây – Hà Nội gồm 1 trang với 4 bài toán tự luận, thời gian làm bài 120 phút, kỳ thi được tổ chức nhằm giúp các em học sinh lớp 9 muốn thi tuyển vào trường biết được cấu trúc đề, làm quen với kỳ thi để có sự chuẩn bị tốt nhất cho kỳ thi vượt cấp, đề thi có lời giải chi tiết .
Đề thi thử vào lớp 10 môn Toán 2017 - 2018 trường Archimedes Academy - Hà Nội lần 6
Đề thi thử vào lớp 10 môn Toán năm học 2017 – 2018 trường THCS Archimedes Academy – Hà Nội lần thứ 6 gồm 5 bài toán tự luận, thí sinh làm bài trong khoảng thời gian 120 phút, nội dung các bài toán trong đề gồm các chủ đề sau: tính toán và rút gọn biểu thức, giải bài toán bằng cách lập phương trình hoặc hệ phương trình, biện luận hệ phương trình, bài toán tương giao giữa đường thẳng và parabol, bài toán về đường tròn, bài toán min – max. Kỳ thi được diễn ra vào ngày 21 tháng 4 năm 2018, đề thi có lời giải chi tiết . Trích dẫn đề thi thử vào lớp 10 môn Toán 2017 – 2018 : + Một ô tô đi từ A đến B cách nhau 260km, sau khi ô tô đi được 120km với vận tốc dự định thì tăng vận tốc thêm 10km/h trên quãng đường còn lại. Tính vận tốc dự định của ô tô, biết xe đến B sớm hơn thời gian dự định 20 phút. [ads] + Cho hệ phương trình x + 2y = 3, x + my = 1 (m là tham số). Tìm giá trị nguyên của m để hệ có nghiệm duy nhất (x, y) sao cho x, y là các số nguyên. + Cho parabol (P): y = x^2 và đường thẳng (d): y = -2mx – 4m (m là tham số) a) Tìm m để (d) cắt (P) tại hai điểm phân biệt A, B. b) Giả sử x1, x2 là hoành độ của A, B. Tìm m để |x1| + |x2| = 3.
Đề thi thử vào lớp 10 môn Toán năm 2018 trường Phan Huy Chú - Hà Nội
Đề thi thử vào lớp 10 môn Toán năm 2018 trường Phan Huy Chú – Hà Nội được biên soạn nhằm giúp các em nắm được cấu trúc, độ khó của đề thi và làm quen với hình thức thi để có sự chuẩn bị tốt cho kỳ thi vào lớp 10 môn Toán, đề gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 120 phút, không tính thời gian phát đề, đề thi có lời giải chi tiết và thang điểm.
Đề thi thử tuyển sinh vào lớp 10 môn Toán đợt 1 trường Thăng Long - Hà Nội
Đề thi thử tuyển sinh vào lớp 10 môn Toán đợt 1 trường Thăng Long – Hà Nội gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 120 phút( không kể thời gian giao đề), kỳ thi được tổ chức vào ngày 25 tháng 02 năm 2018, đề thi thử có lời giải chi tiết . Trích dẫn đề thi thử tuyển sinh vào lớp 10 môn Toán : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một ô tô dự định đi từ A đến B trong một khoảng thời gian đã định. Nếu xe chạy với vận tốc 35 km/h thì đến B chậm mất 2 giờ. Nếu xe chạy với vận tốc 50km/h thì đến B sớm hơn 1 giờ. Tính quãng đường AB và thời gian dự định đi lúc ban đầu. + Cho các số thực không âm x, y, z thỏa mãn: x ≤ 1, y ≤ 1, z ≤ 1 và x + y + z = 3/2. Tím giá trị nhỏ nhất và giá trị lớn nhất của biểu thức P = x^2 + y^2 + z^2. [ads] + Cho đường tròn tâm O, bán kính R . Điểm A thuộc đường tròn, BC là một đường kính (A ≠ B, A ≠ C). Vẽ AH vuông góc với BC tại H. Gọi E, M lần lượt là trung điểm của AB, AH và P là giao điểm của OE với tiếp tuyến tại A của đường tròn (O, R). 1) Chứng minh rằng: AB^2 = BH.BC. 2) Chứng minh: PB là tiếp tuyến của đường tròn (O). 3) Chứng minh ba điểm P, M, C thẳng hàng. 4) Gọi Q là giao điểm của đường thẳng PA với tiếp tuyến tại C của đường tròn (O). Khi A thay đổi trên đường tròn (O), tìm giá trị nhỏ nhất của tổng OP + OQ.