Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn HSG Toán 9 vòng 3 năm 2023 - 2024 phòng GDĐT Hoàng Mai - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển học sinh giỏi môn Toán 9 vòng 3 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND thị xã Hoàng Mai, tỉnh Nghệ An. Trích dẫn Đề chọn HSG Toán 9 vòng 3 năm 2023 – 2024 phòng GD&ĐT Hoàng Mai – Nghệ An : + Cho đường tròn (O;R) và điểm A cố đỉnh với OA = 2R; đường kính BC quay quanh O sao cho tam giác ABC là tam giác nhọn. Đường tròn ngoại tiếp tam giác ABC cắt đường thẳng OA tại điểm thứ hai là I. Các đường thẳng AB, AC cắt (O;R) lần lượt tại điểm thứ hai là D và E. Gọi K là giao điểm của DE với OA. a) Chứng minh AK.AI = AE.AC. b) Tính độ dài đoạn AK theo R. c) Chứng minh tâm đường tròn ngoại tiếp tam giác ADE luôn thuộc một đường thẳng cố định. + Cho 8 đoạn thẳng có độ dài lớn hơn 10 và nhỏ hơn 210. Chứng minh rằng trong đoạn thẳng đó luôn tìm được 3 đoạn thẳng để ghép thành một tam giác.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi huyện Toán 9 năm 2022 - 2023 phòng GDĐT Kỳ Anh - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Kỳ Anh, tỉnh Hà Tĩnh. Trích dẫn Đề học sinh giỏi huyện Toán 9 năm 2022 – 2023 phòng GD&ĐT Kỳ Anh – Hà Tĩnh : + Một cửa hàng nhập được một lô hàng để bán. Ngày thứ nhất bán được 8 sản phẩm và 1/8 số sản phẩm còn lại. Ngày thứ hai bán được 16 sản phẩm và 1/8 số sản phẩm còn lại. Ngày thứ ba bán được 24 sản phẩm và 1/8 số sản phẩm còn lại. Cứ như vậy cho đến ngày cuối cùng thì bán hết toàn bộ lô hàng đã nhập. Biết số sản phẩm bán được mỗi ngày đều bằng nhau. Hỏi sau bao nhiêu ngày thì bán hết lô hàng. + Tam giác ABC cân tại A, biết AB = 2cm và góc A bằng 36. Tính BC. + Cho hình chữ nhật ABCD có diện tích bằng 48cm2; trên BC và CD lần lượt lấy các điểm E và F. Biết SABE = 8cm2; SADF = 2cm2. Tính SAEF.
Đề chọn đội tuyển thi HSG tỉnh Toán 9 năm 2022 - 2023 phòng GDĐT Tân Kỳ - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển dự thi học sinh giỏi cấp tỉnh môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Tân Kỳ, tỉnh Nghệ An; kỳ thi được diễn ra vào ngày 25 tháng 10 năm 2022. Trích dẫn Đề chọn đội tuyển thi HSG tỉnh Toán 9 năm 2022 – 2023 phòng GD&ĐT Tân Kỳ – Nghệ An : + Cho x, y là các số nguyên thỏa mãn 2×2 + x = 3y2 + y. Chứng minh x − y; 2x + 2y + 1 và 3x + 3y + 1 đều là các số chính phương. + Cho hình vuông ABCD. Điểm M thuộc cạnh AC, kẻ MH vuông góc với AB (H thuộc AB). Kẻ MK vuông góc với BC (K thuộc BC). O là trung điểm của AM. a) Chứng minh: HBO đồng dạng MCH b) Chứng minh: BO/CH c) Xác định vị trí của M trên AC để diện tích ADHK đạt giá trị nhỏ nhất. + Cho x; y là các số thực dương thỏa mãn (x + 1)(y + 1) = 4xy. Chứng minh rằng?
Đề HSG huyện Toán 9 vòng 1 năm 2022 - 2023 phòng GDĐT Quỳ Hợp - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 vòng 1 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Quỳ Hợp, tỉnh Nghệ An. Trích dẫn Đề HSG huyện Toán 9 vòng 1 năm 2022 – 2023 phòng GD&ĐT Quỳ Hợp – Nghệ An : + Chứng minh rằng nếu tổng của hai số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 9. + Cho tam giác ABC nhọn. Các đường cao AD, BE và CF cắt nhau tại H. a. Chứng minh CA.CE = CB.CD b. Chứng minh sin BAC = AD.BC/AB.AC c. Gọi G là trọng tâm của tam giác ABC. Cho biết tanB.tanC = 3. Chứng minh rằng HG // BC. + Để chào mừng kỉ niệm 40 năm ngày nhà giáo Việt Nam 20/11/1982 – 20/11/2022. Phòng Giáo dục và Đào tạo Huyện Quỳ Hợp tổ chức một giải bóng chuyền Nam có 7 đội bóng tham gia thi đấu vòng tròn 1 lượt (hai đội bất kỳ chỉ thi đấu với nhau 1 trận). Biết đội thứ nhất thắng a1 trận và thua b1 trận, đội thứ 2 thắng a2 trận và thua b2 trận, …, đội thứ 7 thắng a7 trận và thua b7 trận. Chứng minh rằng a12 + a22 + a32 + … + a72 = b12 + b22 + b38 + … + b72.
Đề học sinh giỏi huyện Toán 9 năm 2022 - 2023 phòng GDĐT Nam Đàn - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Nam Đàn, tỉnh Nghệ An. Trích dẫn Đề học sinh giỏi huyện Toán 9 năm 2022 – 2023 phòng GD&ĐT Nam Đàn – Nghệ An: + Cho a, b, c là các số không âm thỏa mãn: a + b + c = 1. Chứng minh. + Cho tam giác ABC nhọn có hai đường trung tuyến BM và CN vuông góc với nhau tại G. a) Tính tỉ số diện tích của tam giác AMN và tam giác ABC b) Chứng minh AB2 + AC2 = 5BC2 c) Chứng minh: 3(cot B + cot C) ≥ 2. + Cho 10 số nguyên dương 1; 2; 3; ….; 10. Sắp xếp 10 số đó một cách tùy ý thành một hàng. Cộng mỗi số với số thứ tự của nó trong hàng, ta được 10 tổng. Chứng minh rằng trong 10 tổng đó có ít nhất 2 tổng có chữ số tận cùng giống nhau.