Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề ôn tập Toán 11 tháng 03 năm 2020 trường THPT chuyên Hà Nội Amsterdam

Do ảnh hưởng của tình hình dịch bệnh vi-rút Corona (COVID-19), học sinh khối 11 trường THPT chuyên Hà Nội – Amsterdam vẫn chưa thể đi học trở lại từ sau kỳ nghỉ lễ Tết Nguyên Đán 2020, điều này ảnh hưởng lớn đến việc tiếp thu kiến thức môn Toán 11. Để giúp các em có thể tự ôn tập tại nhà, tổ Toán – Tin học trường THPT chuyên Hà Nội – Amsterdam đã biên soạn bộ đề ôn tập môn Toán 11 giai đoạn tháng 03 năm 2020. Đề ôn tập Toán 11 tháng 03 năm 2020 trường THPT chuyên Hà Nội – Amsterdam gồm có 07 trang với 03 đề, chọn lọc các câu hỏi trắc nghiệm và tự luận từ cơ bản đến nâng cao giúp học sinh khối 11 tự ôn luyện. Trích dẫn đề ôn tập Toán 11 tháng 03 năm 2020 trường THPT chuyên Hà Nội – Amsterdam : + Tìm mệnh đề sai trong các mệnh đề sau: A. Một hình bình hành có thể là hình chiếu song song của một hình thang nào đó. B. Một hình bình hành có thể xem là hình chiếu song song của một hình vuông nào đó. C. Một tam giác có thể là hình chiếu song song của tam giác đều nào đó. D. Một đoạn thẳng có thể là hình chiếu song song của tam giác nào đó. [ads] + Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi G là trọng tâm của tam giác ABC. a) Xác định giao điểm I của A’G với mặt phẳng (AB’C’)? Tính IA’:IG? b) Gọi (P) là mặt phẳng qua G và song song với mặt phẳng (AB’C’). Xác định thiết diện của hình lăng trụ bị cắt bởi mặt phẳng (P)? c) Biết tam giác AB’C’ là tam giác đều cạnh a, tính diện tích thiết diện ở trên? d) Gọi (d) và (d’) lần lượt là giao tuyến của mp (P) với mp (ABB’A’) và mp (ACC’A’). Chứng minh rằng d, d’, AA’ đồng qui. + Cho hình chóp tứ giác đều S.ABCD đỉnh S, cạnh đáy của hình chóp có độ dài bằng 2, chiều cao bằng h. Gọi C1(O; r) là hình cầu tâm O bán kính r nội tiếp hình chóp; gọi C2(K; R) là hình cầu tâm K bán kính R tiếp xúc với 8 cạnh của hình chóp. Biết rằng khoảng cách từ O đến mặt phẳng (ABCD) bằng khoảng cách từ K đến mặt phẳng (ABCD). 1. Chứng minh rằng r = (√(1 + h^2) − 1)/h. 2. Tính giá trị của h, từ đó suy ra thể tích của hình chóp.

Nguồn: toanmath.com

Đọc Sách

Đề KSCL lớp 11 môn Toán lần 1 năm 2021 2022 trường THPT Tiên Du 1 Bắc Ninh
Nội dung Đề KSCL lớp 11 môn Toán lần 1 năm 2021 2022 trường THPT Tiên Du 1 Bắc Ninh Bản PDF Đề khảo sát chất lượng môn Toán lớp 11 lần 1 năm học 2021 – 2022 trường THPT Tiên Du 1 – Bắc Ninh mã đề 201 gồm 35 câu trắc nghiệm (07 điểm) và 07 câu tự luận (03 điểm), thời gian làm bài 90 phút. Trích dẫn đề KSCL Toán lớp 11 lần 1 năm 2021 – 2022 trường THPT Tiên Du 1 – Bắc Ninh : + Cho phương trình dạng 2 2 a x b x x c x sin sin cos cos 0 (với a b c không đồng thời bằng 0) . Khi cos 0 x thì biến đổi phương trình đã cho bằng cách nào sau đây để được phương trình chỉ chứa tan x? A. Chia cả hai vế cho 2 cos x. B. Chia cả hai vế cho 2 sin x. C. Chia cả hai vế cho 2 tan x. D. Chia cả hai vế cho 2 cot x. + Cho tam giác ABC và ở ngoài tam giác đó vẽ hai hình vuông ABMN, ACPQ. Gọi O và O’ lần lượt tâm của các hình vuông ABMN và ACPQ. Gọi điểm I là trung điểm của đoạn thẳng BC. Chứng minh rằng: OI BQ. + Khẳng định nào sau đây là đúng? A. Hàm số y x cos 3 là hàm số không chẵn không lẻ. B. Hàm số y x cos 3 là hàm số chẵn. C. Hàm số y x cos 3 là hàm số lẻ. D. Hàm số y x cos 3 là hàm số chẵn và là hàm số lẻ.
Đề KSCL phân ban lớp 11 môn Toán năm 2021 2022 trường Thuận Thành 1 Bắc Ninh
Nội dung Đề KSCL phân ban lớp 11 môn Toán năm 2021 2022 trường Thuận Thành 1 Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề khảo sát chất lượng phân ban môn Toán lớp 11 năm học 2021 – 2022 trường THPT Thuận Thành số 1, tỉnh Bắc Ninh; đề thi có đáp án mã đề 320 321 322 323 324. Trích dẫn đề KSCL phân ban Toán lớp 11 năm 2021 – 2022 trường Thuận Thành 1 – Bắc Ninh : + Một nông dân có 8 sào đất trồng hoa màu. Biết một sào trồng ngô cần 20 công, lãi 3 triệu. Một sào trồng đỗ cần 30 công, lãi 4 triệu. Người nông dân cần trồng x sào ngô và y sào đỗ thì thu hoạch được lãi cao nhất, khi biết tổng số công không quá 180 công. Khi đó T x y 3 2 bằng? + Có hai cái giỏ đựng trứng gồm giỏ A và giỏ B, các quả trứng trong mỗi giỏ đều có hai loại là trứng lành và trứng hỏng. Tổng số trứng trong hai giỏ là 20 quả và số trứng trong giỏ A nhiều hơn số trứng trong giỏ B. Lấy ngẫu nhiên mỗi giỏ 1 quả trứng, biết xác suất để lấy được hai quả trứng lành là 55 84. Số trứng lành trong giỏ A là? + Cho hình chóp S ABCD có đáy ABCD là hình vuông tâm O, cạnh đáy bằng a, cạnh bên SC bằng b thỏa mãn 2 8 a b. Gọi M là trung điểm của OC, mặt phẳng qua M song song với SC và BD. Gọi T là diện tích thiết diện của hình chóp khi cắt bởi mặt phẳng. Giá trị lớn nhất của T là? + Trong các khẳng định sau, khẳng định đúng là A. Trong hình học không gian, hình biễu diễn của một hình thang phải là một hình thang. B. Trong hình học không gian, hình biểu diễn của một hình chữ nhật phải là một hình chữ nhật. C. Trong hình học không gian, hình biểu diễn của một tam giác cân phải là một tam giác cân. D. Trong hình học không gian, hình biểu diễn của một hình tròn phải là một hình tròn. + Mệnh đề nào sau đây sai về phép vị tự: A. Biến đường thẳng thành đường thẳng song song hoặc trùng với nó. B. Biến tam giác thành tam giác đồng dạng với nó, biến góc thành góc bằng nó. C. Biến đường tròn thành đường tròn cùng bán kính. D. Biến ba điểm thẳng hàng thành ba điểm thẳng hàng và bảo toàn thứ tự giữa các điểm ấy.
Đề KSCL lớp 11 môn Toán lần 2 năm 2021 2022 trường THPT Tiên Du 1 Bắc Ninh
Nội dung Đề KSCL lớp 11 môn Toán lần 2 năm 2021 2022 trường THPT Tiên Du 1 Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi khảo sát chất lượng môn Toán khối 11 lần 2 năm học 2021 – 2022 trường THPT Tiên Du số 1, tỉnh Bắc Ninh; đề thi có đáp án mã đề MĐ 101 MĐ 102 MĐ 103 MĐ 104 MĐ 105 MĐ 106 MĐ 107 MĐ 108 MĐ 109 MĐ 110 MĐ 111 MĐ 112. Trích dẫn đề KSCL Toán lớp 11 lần 2 năm 2021 – 2022 trường THPT Tiên Du 1 – Bắc Ninh : + Mệnh đề nào sau đây đúng? A. Hàm số y x cot là hàm số chẵn và là hàm số lẻ trên tập hợp. B. Hàm số y x cot là hàm số lẻ trên tập hợp. C. Hàm số y x cot là hàm số chẵn trên tập hợp. D. Hàm số y x cot không là hàm số chẵn và không là hàm số lẻ trên tập hợp. + Trong các khẳng định sau, khẳng định nào sai? A. Qua 3 điểm phân biệt không thẳng hàng có duy nhất một mặt phẳng. B. Qua 1 đường thẳng và 1 điểm bất kỳ có duy nhất một mặt phẳng. C. Qua 2 đường thẳng cắt nhau có duy nhất một mặt phẳng. D. Qua 2 đường thẳng song song có duy nhất một mặt phẳng. + Có 13 học sinh của một trường THPT đạt danh hiệu học sinh xuất sắc trong đó khối 12 có 7 học sinh nam và 4 học sinh nữ, khối 11 có 2 học sinh nam. Chọn ngẫu nhiên 3 học sinh bất kỳ để trao thưởng, tính xác suất để 3 học sinh được chọn có cả nam và nữ đồng thời có cả khối 11 và khối 12.
Đề KSCL lớp 11 môn Toán lần 3 năm 2021 2022 trường THPT Tiên Du 1 Bắc Ninh
Nội dung Đề KSCL lớp 11 môn Toán lần 3 năm 2021 2022 trường THPT Tiên Du 1 Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi khảo sát chất lượng môn Toán khối 11 lần 3 năm học 2021 – 2022 trường THPT Tiên Du số 1, tỉnh Bắc Ninh; đề thi có đáp án mã đề MĐ 101 MĐ 102 MĐ 103 MĐ 104 MĐ 105 MĐ 106 MĐ 107 MĐ 108 MĐ 109 MĐ 110 MĐ 111 MĐ 112. Trích dẫn đề KSCL Toán lớp 11 lần 3 năm 2021 – 2022 trường THPT Tiên Du 1 – Bắc Ninh : + Cho hình chóp S ABCD có tứ giác ABCD là hình chữ nhật. Gọi M N lần lượt là trung điểm của cạnh SA SB (tham khảo hình vẽ bên). Đường thẳng MN vuông góc với đường thẳng nào trong các đường thẳng sau đây? A. Đường thẳng AB. B. Đường thẳng BC. C. Đường thẳng AC. D. Đường thẳng BD. + Xét các mệnh đề: I: Mặt phẳng nào vuông góc với một trong hai đường thẳng song song thì cũng vuông góc với đường thẳng còn lại. II: Hai đường thẳng cùng vuông góc với một mặt phẳng thì song song với nhau hoặc trùng nhau. III: Đường thẳng nào vuông góc với một trong hai mặt phẳng song song thì cũng vuông góc với mặt phẳng còn lại. IV: Hai mặt phẳng cùng vuông góc với một đường thẳng thì song song với nhau. Số mệnh đề sai trong các mệnh đề trên là? + Xét các mệnh đề: I: Hai mặt phẳng vuông góc với nhau thì mọi đường thẳng nằm trong mặt phẳng này sẽ vuông góc với mặt phẳng kia. II: Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì vuông góc với nhau. III: Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau. Số mệnh đề sai trong các mệnh đề trên là?