Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài giảng phương pháp tọa độ trong không gian - Nguyễn Hoàng Việt

Tài liệu gồm 100 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, tóm tắt lý thuyết cần nhớ, phân loại và phương pháp giải các dạng toán chuyên đề phương pháp tọa độ trong không gian Oxyz (Toán 12 phần Hình học chương 3). Chương 3 . PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN 1. Bài 1. TỌA ĐỘ VÉC TƠ – TỌA ĐỘ ĐIỂM 1. A LÝ THUYẾT CẦN NHỚ 1. B PHÂN LOẠI VÀ PHƯƠNG PHÁP GIẢI TOÁN 3. + Dạng 1. Tọa độ véc tơ 3. + Dạng 2. Tọa độ điểm 6. + Dạng 3. Hình chiếu, đối xứng qua các trục, các mặt toạ độ 11. + Dạng 4. Tính diện tích và thể tích 12. C BÀI TẬP TỰ LUYỆN 14. Bài 2. PHƯƠNG TRÌNH MẶT CẦU 17. A LÝ THUYẾT CẦN NHỚ 17. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 17. + Dạng 1. Xác định tâm I, bán kính r của mặt cầu cho trước 17. + Dạng 2. Mặt cầu dạng khai triển (S): x2 + y2 + z2 − 2ax − 2by − 2cz + d = 0 18. + Dạng 3. Lập phương trình mặt cầu 20. + Dạng 4. Vị trí tương đối 24. C BÀI TẬP TỰ LUYỆN 26. Bài 3. PHƯƠNG TRÌNH MẶT PHẲNG 29. A LÝ THUYẾT CẦN NHỚ 29. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 31. + Dạng 1. Xác định véc tơ pháp tuyến và điểm thuộc mặt phẳng 31. + Dạng 2. Lập phương trình mặt phẳng khi biết các yếu tố liên quan 31. + Dạng 3. Phương trình theo đoạn chắn 35. + Dạng 4. Khoảng cách và góc 36. + Dạng 5. Vị trí tương đối của hai mặt phẳng 38. + Dạng 6. Vị trí tương đối của mặt phẳng với mặt cầu 39. C BÀI TẬP TỰ LUYỆN 43. Bài 4. PHƯƠNG TRÌNH ĐƯỜNG THẲNG 46. A LÝ THUYẾT CẦN NHỚ 46. B PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 49. + Dạng 1. Xác định điểm thuộc và véc tơ chỉ phương của đường thẳng 49. + Dạng 2. Viết phương trình đường thẳng khi biết vài yếu tố liên quan 50. + Dạng 3. Vị trí tương đối của hai đường thẳng 53. + Dạng 4. Vị trí tương đối của đường thẳng và mặt phẳng 55. + Dạng 5. Góc và khoảng cách 56. + Dạng 6. Hình chiếu H của điểm M lên mặt phẳng (P) 58. + Dạng 7. Hình chiếu H của điểm M lên đường thẳng d 59. C BÀI TẬP TỰ LUYỆN 61. Bài 5. MỘT SỐ BÀI TOÁN CỰC TRỊ 66. A PHÂN LOẠI, PHƯƠNG PHÁP GIẢI TOÁN 66. + Dạng 1. Tìm max – min bằng cách thiết lập hàm và khảo sát hàm 66. + Dạng 2. Tìm max – min bằng cách sử dụng mối quan hệ giữa đường cao và đường xiên 68. + Dạng 3. Tìm max – min bằng cách quy về tìm hình chiếu của điểm lên mặt 70. + Dạng 4. Tìm max – min bằng cách quy về tìm điều kiện ba điểm thẳng hàng 73. + Dạng 5. Tìm max min liên quan đến phương trình theo đoạn chắn 74. B BÀI TẬP TỰ LUYỆN 76. Bài 6. BỘ ĐỀ ÔN TẬP CUỐI CHƯƠNG 80. A ĐỀ SỐ 1 80. B ĐỀ SỐ 2 83. C ĐỀ SỐ 3 85. D ĐỀ SỐ 4 88. E ĐỀ SỐ 5 91. Bài 7. ĐÁP ÁN TRẮC NGHIỆM CÁC CHỦ ĐỀ 94. A ĐÁP ÁN TRẮC NGHIỆM BÀI 1 94. B ĐÁP ÁN TRẮC NGHIỆM BÀI 2 94. C ĐÁP ÁN TRẮC NGHIỆM BÀI 3 94. D ĐÁP ÁN TRẮC NGHIỆM BÀI 4 94. E ĐÁP ÁN TRẮC NGHIỆM BÀI 5 94. F ĐÁP ÁN TRẮC NGHIỆM CÁC ĐỀ TỔNG ÔN 94.

Nguồn: toanmath.com

Đọc Sách

Phương pháp tọa độ hóa trong không gian
Tài liệu gồm 34 trang, hướng dẫn sử dụng phương pháp tọa độ hóa trong không gian để giải một số bài toán hình học không gian; giúp học sinh lớp 12 tham khảo khi học chương trình Toán 12 phần Hình học chương 3: Phương Pháp Toạ Độ Trong Không Gian. DẠNG 1 . GẮN HỆ TRỤC TỌA ĐỘ VÀO CÁC HÌNH ĐA DIỆN CÓ SẴN MÔ HÌNH TAM DIỆN VUÔNG. Phương pháp : + Bước 1: Chọn hệ trục toạ độ Oxyz thích hợp. Trong đó gốc tọa độ là giao điểm chung của ba đường đôi một vuông góc với nhau, các tia Ox, Oy, Oz lần lượt nằm trên ba đường đó. + Bước 2: Xác định các toạ độ điểm toạ độ của các véc tơ có liên quan. + Bước 3: Sử dụng các kiến thức về toạ độ để giải quyết các bài toán có liên quan. – Loại 1. Hình chóp có đáy là tam giác. – Loại 2. Hình chóp có đáy là hình thang. – Loại 3. Hình chóp có đáy là hình vuông, hình chữ nhật. – Loại 4. Lăng trụ đứng tam giác. – Loại 5. Lăng trụ đứng tứ giác. DẠNG 2 . GẮN HỆ TRỤC TỌA ĐỘ VÀO CÁC HÌNH ĐA DIỆN CÓ SẴN MÔ HÌNH TAM DIỆN VUÔNG. Dạng toán : Cho tứ diện ABCD có BCD là tam giác vuông tại C và AB ⊥ (BCD). Cách dựng : Ta dựng hệ trục tọa độ Oxyz sao cho C ≡ O, D ∈ Ox, B ∈ Oy, Oz qua C và vuông góc với (BCD). – Loại 1. Tứ diện có một cạnh vuông góc với mặt đáy. – Loại 2. Chóp tam giác đều. – Loại 3. Chóp tứ giác đều hoặc chóp có đáy là hình thoi, đường cao SO. – Loại 4. Hình chóp có đáy là hình vuông (chữ nhật) và mặt bên vuông góc với đáy. – Loại 5. Lăng trụ xiên.
138 bài toán cực trị hình học giải tích không gian Oxyz vận dụng cao
Tài liệu gồm 85 trang, được biên soạn bởi thầy giáo Nguyễn Hoàng Việt, tuyển chọn 138 bài toán cực trị hình học giải tích không gian Oxyz mức độ vận dụng cao, có đáp án và lời giải chi tiết, giúp học sinh lớp 12 tham khảo khi học chương trình Toán 12 phần Hình học chương 3 và ôn thi tốt nghiệp THPT môn Toán. Trích dẫn 138 bài toán cực trị hình học giải tích không gian Oxyz vận dụng cao: + Cho đường thẳng 1 2 2 1 1 x y z và hai điểm A(0;-1;3), B(1;-2;1). Tìm tọa độ điểm M thuộc đường thẳng sao cho 2 2 MA MB 2 đạt giá trị nhỏ nhất. + Cho đường thẳng 1 2 1 1 2 x y z và ba điểm A(1;3;-2), B(0;4;-5), C(1;2;-4). Biết điểm M a b c thuộc đường thẳng sao cho 2 2 2 MA MB MC đạt giá trị nhỏ nhất. Khi đó, tổng abc bằng bao nhiêu? + Trong không gian với hệ tọa độ Oxyz, cho đường thẳng 1 2 1 1 x y z và hai điểm A(-1;-1;6), B(2;-1;0). Biết điểm M thuộc đường thẳng sao cho biểu thức 2 2 MA MB 3 đạt giá trị nhỏ nhất là Tmin. Khi đó, Tmin bằng bao nhiêu?
Chủ đề phương trình đường thẳng ôn thi tốt nghiệp THPT môn Toán
Tài liệu gồm 304 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp lý thuyết trọng tâm, ví dụ minh họa và các dạng bài tập chủ đề phương trình đường thẳng ôn thi tốt nghiệp THPT môn Toán, có đáp án và lời giải chi tiết. DẠNG 1 Xác định vectơ chỉ phương của đường thẳng. DẠNG 2 Viết phương trình đường thẳng. DẠNG 3 Tìm tọa độ điểm liên quan đến đường thẳng. DẠNG 4 Góc giữa đường thẳng và mặt phẳng, giữa hai đường thẳng. DẠNG 5 Khoảng cách từ điểm đến đường thẳng, giữa hai đường thẳng. DẠNG 6 Vị trí tương đối giữa hai đường thẳng, giữa đường thẳng và mặt phẳng. DẠNG 7 Bài toán liên quan đến đường thẳng – mặt phẳng – mặt cầu. DẠNG 8 Điểm thuộc đường thẳng. DẠNG 9 Phương trình đường thẳng liên quan đến góc và khoảng cách. DẠNG 10 Hình chiếu và bài toán cực trị. DẠNG 11 Phương trình đường thẳng trong đề thi của Bộ Giáo dục và Đào tạo.
Chủ đề phương trình mặt phẳng ôn thi tốt nghiệp THPT môn Toán
Tài liệu gồm 262 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp lý thuyết trọng tâm, ví dụ minh họa và các dạng bài tập chủ đề phương trình mặt phẳng ôn thi tốt nghiệp THPT môn Toán, có đáp án và lời giải chi tiết. DẠNG 1 Xác định vectơ pháp tuyến của mặt phẳng. DẠNG 2 Viết phương trình mặt phẳng dùng đường thẳng. DẠNG 3 Vị trí tương đối giữa hai mặt phẳng. DẠNG 4 Tìm tọa độ điểm liên quan đến mặt phẳng. DẠNG 5 Khoảng cách từ một điểm để một mặt phẳng. DẠNG 6 Ví trị tương đối giữa mặt cầu và mặt phẳng. DẠNG 7 Viết phương trình mặt cầu liên quan đến mặt phẳng. DẠNG 8 Điểm thuộc mặt phẳng. DẠNG 9 Phương trình mặt phẳng không dùng đường thẳng. DẠNG 10 Phương trình theo đoạn chắn. DẠNG 11 Hình chiếu của điểm lên mặt phẳng. DẠNG 12.1 Các bài toán cực trị phần 1. DẠNG 12.2 Các bài toán cực trị phần 2. DẠNG 13 Các bài toán liên quan đến góc. DẠNG 14 Phương trình mặt phẳng trong đề thi của Bộ Giáo dục và Đào tạo.