Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG huyện lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Thạch Thành Thanh Hóa

Nội dung Đề HSG huyện lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Thạch Thành Thanh Hóa Bản PDF - Nội dung bài viết Đề HSG huyện lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Thạch Thành Thanh Hóa Đề HSG huyện lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Thạch Thành Thanh Hóa Chúng tôi xin được giới thiệu đến quý thầy cô và các em học sinh lớp 7 đề khảo sát học sinh giỏi cấp huyện môn Toán lớp 7 năm học 2022 – 2023 do phòng Giáo dục và Đào tạo huyện Thạch Thành, tỉnh Thanh Hóa tổ chức. Kỳ thi sẽ diễn ra vào ngày 14 tháng 03 năm 2023. Dưới đây là một số câu hỏi từ Đề HSG huyện Toán lớp 7 năm 2022 – 2023 phòng GD&ĐT Thạch Thành – Thanh Hóa: 1. Cho các số a, b, c, x, y, z thỏa mãn a + b + c = a² + b² + c² = 1 và x/a = y/b = z/c (các tỉ số đều có nghĩa). Hãy chứng minh rằng x² + y² + z² = (x + y + z)². 2. Một bản thảo cuốn sách dày 555 trang được giao cho 3 người đánh máy. Người thứ nhất cần 5 phút để đánh máy một trang, người thứ hai cần 4 phút, người thứ ba cần 6 phút. Hỏi mỗi người sẽ đánh máy bao nhiêu trang bản thảo, biết rằng cả 3 người cùng nhau làm từ đầu đến khi đánh máy xong. 3. Cho điểm M thuộc đoạn thẳng AB (MA > MB). Trên cùng một nửa mặt phẳng nằm trên bờ AB, vẽ các tam giác đều AMC, BMD. Gọi E, F lần lượt là trung điểm của AD, BC. Gọi K là giao điểm của AD và BC. Hãy chứng minh rằng: Đoạn thẳng AD bằng BC và AEM bằng CFM, từ đó suy ra tam giác MEF là tam giác đều.

Nguồn: sytu.vn

Đọc Sách

Đề giao lưu học sinh giỏi Toán 7 năm 2017 - 2018 phòng GDĐT thành phố Thái Nguyên
Đề giao lưu học sinh giỏi Toán 7 năm 2017 – 2018 phòng GD&ĐT thành phố Thái Nguyên
Đề giao lưu HSG Toán 7 năm 2016 - 2017 phòng GDĐT Yên Lạc - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu HSG Toán 7 năm học 2016 – 2017 phòng GD&ĐT Yên Lạc – Vĩnh Phúc; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề giao lưu HSG Toán 7 năm 2016 – 2017 phòng GD&ĐT Yên Lạc – Vĩnh Phúc : + Cho p và q là hai số nguyên tố lớn hơn 3 và thoả mãn p = q + 2. Tìm số dư khi chia p + q cho 12. + Cho A là một tập hợp gồm 10 chữ số. B là một tập con của A gồm 5 phần tử. Chứng minh rằng trong tập hợp các số có dạng x + y, với x, y là hai phần tử phân biệt thuộc B, có ít nhất 2 số có cùng chữ số hàng đơn vị. + Với mỗi số nguyên dương a, kí hiệu S(a) là số chữ số của a. Tìm số nguyên dương n để là số chẵn.
Đề giao lưu HSG Toán 7 năm 2016 - 2017 phòng GDĐT Vĩnh Lộc - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu HSG Toán 7 năm 2016 – 2017 phòng GD&ĐT Vĩnh Lộc – Thanh Hóa; đề thi có đáp án + lời giải + thang điểm. Trích dẫn đề giao lưu HSG Toán 7 năm 2016 – 2017 phòng GD&ĐT Vĩnh Lộc – Thanh Hóa : + Cho tam giác ABC (AB < AC, góc B = 600). Hai phân giác AD và CE của ABC cắt nhau ở I, từ trung điểm M của BC kẻ đường vuông góc với đường phân giác AI tại H, cắt AB ở P, cắt AC ở K. a) Tính AIC. b) Tính độ dài cạnh AK biết PK = 6cm, AH = 4 cm. c) Chứng minh IDE cân. + Tìm độ dài 3 cạnh của tam giác có chu vi bằng 13cm. Biết độ dài 3 đường cao tương ứng lần lượt là 2cm, 3cm, 4cm. + Chứng minh rằng 10 là số vô tỉ.
Đề khảo sát HSG Toán 7 năm 2016 - 2017 phòng GDĐT thành phố Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát HSG Toán 7 năm 2016 – 2017 phòng GD&ĐT thành phố Thái Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát HSG Toán 7 năm 2016 – 2017 phòng GD&ĐT thành phố Thái Bình : + Một đội công nhân có 39 người, được chia thành ba nhóm I, II, III. Nếu thêm 1 người vào nhóm I, thêm 2 người vào nhóm II và bớt 3 người của nhóm III thì số công nhân của ba nhóm I, II, III tỉ lệ nghịch với các số 4; 3; 2. Tìm số công nhân của mỗi nhóm. + Cho tam giác DEF có D = 60. Tia phân giác của góc E cắt cạnh DF ở P. Tia phân giác của góc F cắt cạnh DE ở Q. Gọi O là giao điểm của PE và QF. 1. Tính số đo EOF và chứng minh OP = OQ. 2. Tìm điều kiện của tam giác DEF để hai điểm P và Q cách đều đường thẳng EF. + Cho tam giác ABC có góc A nhọn. Vẽ về phía ngoài tam giác ABC hai tam giác ABM, ACN vuông cân tại A. Gọi E là giao điểm của BN và CM. 1. Chứng minh ABN = AMC và BN CM. 2. Cho BM = 5 cm, CN = 7 cm, BC = 3 cm. Hãy tính độ dài đoạn thẳng MN.